How to Prove Work: With Time or Memory
(Extended Abstract)

Xiangyu Su
Tokyo Institute of Technology
Tokyo, Japan
su.x.ab@m.titech.ac.jp

Mario Larangeira
I0HK, Tokyo Institute of Technology
Tokyo, Japan
mario@c.titech.ac.jp

Keisuke Tanaka
Tokyo Institute of Technology
Tokyo, Japan
keisuke@is.titech.ac.jp

mario.larangeira@iohk.io

Abstract—Proposed by Dwork and Naor (Crypto’ 92) as an
anti-spam technique, proof-of-work is attracting more attention
with the boom of cryptocurrencies. A proof-of-work scheme
involves two kinds of participants, provers and verifiers. Provers
intend to solve a puzzle with a solution, while verifiers are in
charge of checking the puzzle’s correctness and solution pair.
The widely adopted hash-based construction achieves an optimal
gap in computational complexity between provers and verifiers.
However, in industry, proof-of-work is done by highly dedicated
hardware, e.g., “ASIC”, which is not generally accessible, let
alone the high energy consumption rates. In this work, we turn
our eyes back on the original meaning of “proof of work”. Under
a trusted setting, our proposed framework and its constructions
are based on computationally hard problems and the unified
definition of hard cryptographic primitives by Biryukov and
Perrin (Asiacrypt’ 17). The new framework enables us to have a
proof-of-work scheme with time-hardness or memory-hardness
while cutting down power consumption and reducing the impact
of dedicated hardwares.

Index Terms—Blockchain, Proof-of-Work, Hard Primitives

I. INTRODUCTION

When introduced by Dwork and Naor in the early
1990s [1], the proof-of-work (PoW) scheme was to combat
junk mail. The idea is simple: Senders evaluate a moderately
hard function as “proof of work™” to gain access to an e-
mail service. A sender is malicious if it intends to send large
amounts of junk e-mail. Such malicious senders have to donate
a significant portion of their computing power during the
evaluation. Thus the scheme mitigates frivolous use. Almost 20
years later, the work of Bitcoin by Satoshi Nakamoto [2] used
a similar idea, ie., the PoW scheme, to mitigate the “Sybil
Attack” in the peer-to-peer network. An attacker who creates
numerous pseudonymous identities to subvert the network
needs significant advantages in computing power. By assuming
the upper bounds of the attacker’s computing power, the PoW
scheme rules out such attacks. The innovative work refueled
the interest of the community in researching PoW-related
schemes.

A. Background and Motivations
Participants in a PoW scheme are provers and verifiers.
Provers solve a given puzzle instance (puzzle,T) with a

This work was supported by the Input Output Cryptocurrency Collaborative
Research Chair funded by IOHK.

solution solution, where T is the difficulty of puzzle. By
difficulty, we mean computational complexity. Verifiers check
the (puzzle, solution) pair’s correctness, according to the corre-
sponding difficulty 7. The puzzle should be moderately hard,
i.e., the puzzle costs neither too much computing power nor
too little.

A widely adopted construction is base on hash functions:
Upon receiving a puzzle and a target value for difficulty,
provers try to find a solution. The hash of the (puzzle, solution)
pair should be less than the target value 7'. For example, in
the Bitcoin system, the hash value should begin with at least
T zeros.

In general, the hash-based construction requires massive
energy consumption in large-scale implementation due to the
massive number of executions required of the hash function.
Another issue comes from the hardware dedicated to com-
puting hashes, which sacrifices the fairness and the decentral-
ization of the currency systems for financial rewards. Since
such hardware, e.g., the “ASIC” is relatively expensive and
produces much more hashing power than the regular CPUs,
which leads to the centralization of hashing power to specific
groups who can afford the hardware. Moreover, the hardware
is highly dedicated, only capable of particular types of hash
functions, and will lose its value when no more hashes are
needed. Finally, the security is also questionable, as pointed
out by Ball et al. [3]: the security is based on the belief that
concrete hash functions, say SHA-256, behave unpredictably,
which has only heuristically provable guarantees.

These issues highlight the need for more research on alterna-
tives for PoW frameworks and constructions. For frameworks,
considerably many results have been proposed, including
proof-of-stake [4], proof-of-space [5], and other paradigms [6].
However, to the best of our knowledge, only a handful of con-
structions based on computational assumptions are known [3].
The two main barriers are:

1) The puzzle can be overwhelmingly difficult given a
similar security parameter from the hash function based
construction;

2) It is infeasible to fine-tune the difficulty without read-
justing the security parameters of the underlying hard
problems.

Our work mitigates the difficulty of the computationally hard
problems with an alternative solving process while maintaining
the difficulty of being moderate and tunable. We achieve this
at the expense of involving a trusted puzzle generation phase.
Our construction may find its applications in hybrid settings
where a trusted third party, e.g., a company which maintains
a consortium blockchain, can provide puzzle generation ser-
vices.

B. Our Approaches

The straightforward idea is to use trapdoor functions. We
push the argument as follows. For a secure trapdoor function,
to find the trapdoor is comparable in computational complex-
ity to inverting the function, while the function is trivially
invertible if the trapdoor is given. Henceforth, we design a
moderately hard approach to offer the trapdoor. Precisely,
the unified framework by Biryukov and Perrin [7] of hard
cryptographic primitives gives us a way to ask provers to
evaluate a hard function before obtaining the trapdoor. The
unified framework brings even more advantages since the
definition is along three axes in [7]: time, memory, and code.
In this work, we focus on the former two and propose:

o A new framework for PoW schemes called “advice-based
PoW” and its weakened variant, the “advice-based PoW
with trusted generators”;

e A generic construction for the advice-based PoW with
trusted generators, based on one-way trapdoor functions
and asymmetrically hard functions [7];

e Two concrete constructions, which achieve time or mem-
ory hardness for the PoW schemes provably.

Our work is in the random-access machine model. The
framework provides a generic transformation from asymmet-
rically hard functions [7] to PoW schemes. Thus it fills the
gap between cryptographically hard functions and practical
PoW schemes. Similar to the original POW scheme. An advice-
based PoW scheme associates with an efficient puzzle genera-
tion, a solving algorithm that matches the computing power to
a designed difficulty, and an efficient verification that should be
at most logarithmic in the solving’s computation complexity.
We novelly handle the puzzle by an instance of computation-
ally hard problems and a preimage for hard functions. The
solving algorithm first evaluates the hard problem to obtain
a piece of advice, e.g., the trapdoor of a trapdoor function,
and finally, solve the puzzle with the advice. However, there
is no guarantee of the relation between the advice and the
trapdoor without a trusted puzzle generation phase in practical
constructions. Thus, we include a trusted generator in the
framework for providing correct puzzle generation services.

For the contributions, we present a generic construction
based on a special kind of one-way trapdoor functions and
asymmetrically hard functions with an efficient generation
under a trusted setting. We require the one-way trapdoor
function can be generated from a given trapdoor, e.g., the RSA
problem. Henceforth, by instantiating it with the RSA problem,
we show two concrete constructions based on the RSW time-
lock puzzle [8] (RSW puzzle) and the DIODON function [7]

for advice-based PoW with trusted generators scheme with
time and memory-hardness, respectively. We argue that iter-
ative squaring (of the RSW puzzle) is relatively easy so that
dedicated hardware will not surpass standard CPUs vastly. We
only demonstrate the proofs and implementation for the time-
hard construction due to the page limitation. The other follows
similarly.

C. Related Work

We investigate the constructions of the proof-of-work
scheme with time-hardness or memory-hardness. For time-
hardness, we have the time-lock puzzle scheme [8] and verifi-
able delay functions [9], while for memory-hardness, we have
the memory-hard PoW scheme [10], [11] and the proof-of-
space scheme [5].

a) Time-lock puzzle and verifiable delay functions.:
The time-lock puzzle, introduced by Rivest, Shamir, and
Wagner [8], is already a semi-PoW in advance, lacking only
the efficient public verifiability. By adding a knowledge proof
protocol, Boneh et al. [9] enhanced the time-lock puzzle
scheme as the verifiable delay functions, providing efficient
and public to the verification of the time-lock puzzle. Built on
top of the time-lock puzzle, constructions by Wesolowski [12]
and Pietrzak [13] rely heavily on the structure of concrete
time-lock puzzles, leaving the lack of flexibility. Projects, e.g.,
IOTA, are considering to take verifiable delay functions as
candidates for replacing PoW schemes [14].

b) Memory-hard PoW schemes and proof-of-space
schemes.: Aiming to reduce ASICs’ impact, Biryukov and
Khovratovich [10], proposed the memory-hard PoW schemes.
They took the memory-hard password hashing functions as
basic building blocks. The construction also has the drawback
that there is only heuristic provability. Several attacks are
presented by Coelho et al. in [11], causing concerns on the
security. As an alternative, the proof-of-space scheme also con-
siders memory-hardness. However, an adversary can convince
verifiers with valid proof from honest provers because it is not
unique. Thus, the proof-of-space scheme seems improper for
building a memory-hard PoW scheme.

II. PRELIMINARIES

We use \ for a security parameter and 17 for clarifying the
length of inputs. PPT denotes probablistic polynomial time.
The function negl()) is negligible of A, if for every positive
integer ¢, there exists a large enough A, such that negl(\) <

A7¢ holds. Given a set X, = & X means z is randomly
and uniformly sampled from X’; while for an algorithm Alg,
x < Alg denotes that x is assigned to the outputs of Alg on
fresh randomness. For an index set, [k] = {0,1,...,k — 1}.
We also introduce terms, including resource, hardness, and
difficulty, with given or renewed uses in this paper.

A. Resource

Regardless of time-wise or memory-wise, the unified mea-
surement of computational complexity is about the resource
to be consumed. Thus under the term of resource, given

R = (p, u), the resource requirements of a computational task,
p = {Time, Memory} denotes the resource type for evaluating
the task, and u denotes the desired amount of resource units
for completing the task.

Although w outlines the desired computational complexity,
we intend to analyze it in a more fine-grained way. Thus we
define a J-function, regarding the possible lower bounds for
the task.

Definition 1 (§-Function): For any amount of resource units

u, there exists 0 < € < 1, such that §(u) is lower bounded by
uc.
The §-function outlines the loss of the required resource: a
clever participant may complete the task with less than « units
of resource, but its consumption must be larger than (u) as
long as the scheme is secure. Thus a larger e, i.e., closer to
1, provides a better loss rate for evaluating the task and better
security.

B. Hardness and Difficulty

We clarify these easily confused terms before proceeding to
formal definitions.

o Hardness of hard functions is the resource cost of

evaluating a hard function, with time or memory units;

« Difficulty of PoW puzzles is the total cost of solving a

PoW puzzle, with time and memory units.

In later sections, we consider hardness with respect to time
and memory, but handle the difficulty with a unified notation:
T(Mu), given R = (p,u). In general, a PoW puzzle is
T(\, u)-difficult,

e for p = Time, if solving the puzzle takes no less than

T(\ 6(u)) time;
o for p = Memory, if solving the puzzle takes no less than
T'(\) time and §(u) memory units.

Remark (Size Restriction of w): uw must be subexponential
of A asymptotically. Any algorithm with a longer run time,
e.g., exponential of A, enables provers to crack the underlying
hard problem without going through the designed routine. On
the other hand, u should be well-chosen to provide the desired
moderate hardness.

III. DEFINITIONS OF FRAMEWORKS

In this section, we present the advice-based framework for
the PoW scheme and show a weakened variant, which requires
a trusted puzzle generation phase, the advice-based PoW with
trusted generators. The formal definitions for syntax will be
unified, i.e., without specifying time-hardness or memory-
hardness. However, in terms of security, time-memory trade-
offs are always the case for memory-hard cryptographic prim-
itives. Thus we give specific definitions of security concerning
time and memory separately.

A. Advice-Based PoW Definitions

The advice-based PoW framework involves a tuple of
algorithms (Setup, PGen, EvalSolve, Verify). Setup generates
public parameters that determine domains according to a
security parameter; PGen generates a puzzle with an auxiliary

input. The auxiliary input serves as the alternative approach for
providing trapdoors; EvalSolve consists of two sub-algorithms
Eval and Solve, where Eval outputs a piece of advice for
Solve to solve the puzzle with a solution; Verify verifies the
correctness of the puzzle and solution concerning the resource.

Definition 2 (Advice-Based PoW): The tuple of algorithms
(Setup, PGen, EvalSolve, Verify) works as follows:

o Setup(1*,R) — pp. On input a security parameter A and
resource R = (p,u) with type p and units amount wu,
Setup outputs a public parameter pp, which determines
the puzzle and solution domain;

e PGen(pp) — (puz,aux). On input the public parameter
pp, PGen ouputs a puzzle puz for advice-based PoW
and a puzzle-auxiliary aux for evaluating the advice. The
computational complexity for solving (puz, aux) follows
the given R in Setup;

o EvalSolve(pp, puz,aux) — solution. On inputs, the two
sub-algorithms Eval and Solve of EvalSolve are:

— Eval(pp,aux) — advice. Eval takes in pp and aux,
produces a piece of advice advice;

— Solve(pp, puz, advice) — solution. With obtained
advice from Eval, Solve solves puz and outputs the
solution solution.

« Verify(pp, puz, solution) — {0/1}. Verify is a determin-
istic algorithm. It checks the correctness for the pair
(puz, solution), accepts with “1” and “0” otherwise.

Remark (Inherent Difficulty): Instead of in PGen’s outputs,
we regard the difficulty T'(\,u) as an inherent property of
(puz,aux) generated with parameters pp and R = (p, u), and
T(\,) is only used for security analysis.

We weaken the advice-based PoW by adding a trapdoor
known to who runs the puzzle generation phase and discard
the trapdoor after finishing the puzzle generation.

Definition 3 (Advice-Based PoW with Trusted Generators):
The difference to Definition 2 lies in the Setup and PGen
algorithm:

o Setup(1*,R) — (pp, td), where td is an additional secret
trapdoor for the puzzle generator;

e PGen(pp,td) — (puz,aux). A trusted generator runs
KGen with td from the Setup algorithm and generates
(puz, aux);

o EvalSolve and Verify work identically as in Definition 2.

In order for a cryptographic primitive to be useful, it must be

correct: for the advice-based PoW scheme, the solution output
from EvalSolve should be accepted by Verify with sufficient
possibility for a properly generated (puz, aux).

Definition 4 (Correctness): An advice-based PoW scheme

is correct, if Setup and PGen are properly executed, if
EvalSolve(pp, puz, aux) — solution,

Pr [Verify(pp, puz, solution) = 0] < negl(A).

B. Security

The primary security of a proof-of-work scheme is the
difficulty, i.e., given a pair of (puz, aux) with difficulty T'(\, u)

of resource type p, except only negligible probability, an ad-
versary can obtain an acceptable solution with fewer resource
units.

We introduce two fundamental properties: soundness and
hardness, focusing on puz and aux (Solve and Eval), re-
spectively. However, soundness and hardness are insufficient
to achieve difficulty because the intermediate steps of the
eval algorithm may leak information for the Solve algorithm.
Thus one can obtain a correct solution without the designed
advice. Henceforth, we require a third property called “advice
unpredictability”. We show this property concerning concrete
constructions in Section V.

1) Soundness: Recall the structure of Solve, soundness
relies on the fact that without a piece of valid advice, provers
even run in a super-polynomial time of A can only find
a valid solution with negligible probability. Precisely, for
any adversary A, running in time ¢(\) that is larger than
T(\,u), on input only the puzzle puz (aux is hidden to the
adversary), the probability A(pp,puz) — solution” such that
Verify(pp, puz, solution’) = 1 is negligible of \. The definition
of soundness is unified because we focus on the run time for
an adversary to produce an acceptable solution.

Definition 5 (t-Sound): An advice-based PoW with trusted
generators scheme is ¢-sound, if the following holds for any
adversary A runs less than time ¢:

Pr[Verify(pp, puz, solution’) = 1] < negl()),

where pp < Setup(1*,R), (puz,aux) < PGen(pp) and
solution” <— A(pp, puz). The probability takes over random-
ness of PGen and A.

Remark (Achieveable Soundness): We consider the range
of ¢ such that we can have meaningful soundness. Recall the
restriction on resource consumption u in Section II, bounded
above by the sub-exponential of A. Directly, ¢ should be
larger than w or T'(X) in time-hard or memory-hard scheme.
Moreover, t should be strictly less than exponential of A, i.e.,
O(2*/¢) with sufficiently large ¢ since no algorithm running in
t-time can solve the underlying hard problem, which is puz in
our case. t << O(2*/¢) guarantees that provers cannot crack
puz for an acceptable solution with brute force.

2) Hardness: Soundness captures the impossibility for
solving the puzzle without a valid piece of advice, and
hardness means that no prover can obtain such advice using
fewer resource units than §(u) with non-negligible probability.
Hardness, as previously mentioned, has time-hardness and
memory-hardness defined separately in this section. We first
define a unified hardness game. Consider the following game
in Figure 1 between a two-stage adversary A = (A, 4;) and
a challenger CH:

Setup(1*,R) — (pp, td)
) PGen(pp, td) — (puz, aux®)

<

Ao(pp) = {aux},

{aux}q

?

Evaliy(pp, {aux}q) — {advice},

Ao(pp, {advice},) — st

v
3

{advice}q

Aj (st, aux*) — advice' advice’

Solve(pp, puz, advice’) — solution’
Verify (pp, puz, solution”) — {0/1}

Fig. 1: Hardness Game

The adversary is said to win the hardness game if the
challenger outputs “1” with non-negligible probability, and
aux* is not in the adversary’s query set {aux},, where ¢ is
the maximum number of the adversary’s query times.

Definition 6 (5-Time-Hard): An advice-based PoW with
trusted generation scheme is d-time-hard, if for any algorithm
A = (Ap, A1), where Ag runs in O(poly(A, u)) time and A;
runs in &(u) time, the probability of .4 winning the hardness
game is negligible of A\ and the probablity is taken over PGen,
A and Verify’s randomness.

As shown by Hellman [15], formalization of memory-
hardness is difficult because one can trade its memory with
computation time, which leads to the violation of memory-
hardness. Thus, instead of only using memory, we measure
both time and memory costs in our definition.

Definition 7 ((t,d)-Memory-Hard): An advice-based PoW
with trusted generation scheme is (t,d)-memory-hard, if for
any algorithm A = (Ag, A;), where Ay has running time
O(poly(A,u)) and Ay runs in time ¢(A\) using up to §(u)
memory units, the probability of A winning the hardness game
is negligible of A and is taken over PGen, A and Verify’s
randomness.

3) Difficulty: In the difficulty game, we provide the ad-
versary a full power with puz and the proper aux*. While
in the soundness definition, the adversary only obtains puz;
in the hardness game, the adversary only has aux*. Similar
to the hardness game, the adversary can query {aux}, to the
challenger for {advice},. We give the following game-based
definition for the difficulty in Figure 2.

Setup(1*,R) — (pp, td)

(pp, puz) PGen(pp,td) — (puz, aux™)

{aux}q

Ao(pp, puz) — {aux},

{advice}q

Evalw(pp, {aux}q) — {advice},

Ao(pp, puz, {advice},) — st

st [2ux”
V>

A (st, aux*) — solution solution

Verify(pp, puz, solution) — {0/1}

Fig. 2: Difficulty Game

The adversary is said to win the difficulty game if the
challenger outputs “1” with non-negligible probability and
aux* ¢ {aux}, A Eval(u,aux*) ¢ {advice},. Notice that, in
the difficulty game, the adversary can process puz in advance.

Definition 8 (T'(\, u)-Difficult): An advice-based PoW with
trusted generation scheme is T'(\, u)-difficult, if for any algo-
rithm A = (Ap, A;), where A runs in T'(\, 6(u)) time (T'(X\)
time and §(u) memory units) the probability of A winning the
difficulty game is negligible of A and is taken over PGen, A
and Verify’s randomness.

Intuitively, soundness indicates that if an adversary is pro-
vided with an arbitrary advice’ under its choices with the
given puz, it is infeasible to compute an acceptable solution
within super-polynomial time. Hardness indicates that even if
the adversary can query on auxs under its choices, it cannot
produce a piece of valid advice on the very aux® without
donating enough computing power (resource).

IV. BUILDING BLOCKS

Here we introduce the building blocks for constructions,
starting from asymmetrically hard function family [7], denoted
by AHF; and one-way trapdoor function family, denoted by
TDP.

A. Asymmetrically Hard Functions

We formalize the implied definitions from [7] for further
use and show the candidate constructions. An asymmetrically
hard function family involves a four-tuple of algorithms (Gen,
Sample, Eval, Asy):

e Gen(1*,R) — (i,td). On inputs A and R = (p,u), Gen
outputs an index ¢ for f; € AHF and the corresponding
trapdoor td;

o Sample(1*,i) — 2. On inputs A and the index i, Sample
samples x <— X, where X is the domain of f;;

o Eval(1*,i,z) — y. Eval evaluates f;(z);

o Asy(1*,i,td, x) — 7/. Asy evaluates f;(x) with a trap-
door td.

Taken together, these algorihtms should satisfy the following
properties, omitting 1* below.

Definition 9 ((R, 6)-Asymmetrically Hard Function Family):
AHF is an (R, §)-asymmetrically hard function family for R =
(p,u) and § = §(w), if for any (i,td) < Gen(R), the following
holds for f; € AHF.

« Correctness: For all z <— Sample(i),
Pr{Eval(i,z) = fi(2)] = 1.

where the probability is taken over Eval’s randomness.

o Hardness: f; is 6(u)-hard ((¢(u), §(u))-hard, respectively
when the resource is memory). That is, for any adversary
A without td, samples = <— Sample(i) and runs with less
than §(u)-resource units of p = Time or (¢(u),d(u))-
resource units of p = Memory,

PrA(i, z) = fi(z)] < negl(}),

where the probability is taken over A’s randomness.
o Asymmetrical hardness: For all x <— Sample(i), Asy runs
with O())-resource units of p and satisfies correctness:

Pr[Asy(i,z) = fi(x)] =1,
where the probability is taken over Asy’s randomness.

B. Special One-Way Trapdoor Functions

We refine the textbook definition of the one-way trapdoor
functions to fit in our generic constructions. More concretely,
the generator of the one-way trapdoor function family takes
a trapdoor as input and outputs the corresponding a one-way
trapdoor function or L if there exists no such a function. We
also adapt a similar syntax used for the asymmetrically hard
functions. A special one-way trapdoor function family involves
a four-tuple of algorithms (Gen, Sample, Eval, Invert):

e Gen(1*,td) — i. On input A and a trapdoor td, if td

corresponds to an f; € TDP, Gen outputs the index ¢ of
fi, otherwise Gen oupts 1;
o Sample(1*,7) — . On inputs A and the index i, Sample
samples x <— X, where X’ is the domain of f;;
o Eval(1*,i,7) — y. Eval evaluates f;(z);
o Invert(1*,i,td,y) — 2’. Invert inverts y = f;(x) for =
with a trapdoor td.
Similarly, these algorithms should satisfy the following prop-
erties, omit also 1* below, and for algorithms with no input
after this omission, we omit parentheses, e.g., Gen instead of
Gen().

Definition 10 (One-Way Trapdoor Function Family): TDP
is an one-way trapdoor function family, if for any ¢ <
Gen(R, td), the following holds for f; € TDP.

« Correctness: For all z <— Sample(i),
Pr[lnvert(i, td, Eval(i, x)) =] = 1,

where the probability is taken over Invert’s randomness.
e One-wayness: For y < Eval(é,) on all x <— Sample(i),
any adversary A without td, running in poly(\) time,

Pr[A(i,y) = z] < negl()),

where the probability is taken over A’s randomness.

C. Candidates of Asymmetrically Hard Functions

Asymmetrically hard functions are defined over two re-
source types, time and memory. We show the candidate
constructions: the RSW puzzle and the DIODON function.
Then prove that they are time-hard and memory-hard asym-
metrically hard function families, respectively.
1) RSW time-lock puzzle.: The four-tuple of algorithms
in the RSW puzzle scheme (Gen,Sample, Eval, Asy) is as
follows:
o In Gen(1*,R), interpret R = (Time, u). Sample a larger
integer N = pq, where p,q are two prime numbers and
Ip| = |g| = \. Set outputs as (i,td) = (N, u), (N) =
(p—1)(g—1));

o In Sample(1*,4), interpret i = (N, u). Sample x «+ Z%
and set outputs as x;

o In Eval(1?,4,x), interpret s = (N, u). Compute y = x
mod N and set outputs as y;

o In Asy(1%,i,td, x), interpret i = (N,u) and td = ¢(N).

Compute y' = 22" ™4 ?(N) mod N and set outputs as
/

y.
We formalize the following assumption which was implic-
itly mentioned in [9].
Assumption 4.1 (RSW Time-Lock Assumption): Given
((N,u), x), the outputs of honestly executed Gen and Sample,
any adversary A runs in 0(u)-time,

qu

Pr[A((N,u),z) = 2z>" mod N] < negl(\),

where the probability is taken over A’s randomness.

By definition, the RSW puzzle scheme is correct and asym-
metrically hard. Deriving from Assumption 4.1 directly, the
RSW puzzle scheme is 6(u)-hard. Thus we have the following
lemma:

Lemma 1: An RSW puzzle scheme is a time-hard asymmet-
rically hard function family if the RSW time-lock assumption
holds.

The proof is straightforward. Thus, we skip it and discuss the
DIODON function next.

2) DIODON function.: The DIODON function scheme [7]
puts forward the idea of the RSW puzzle, creating a list
that stores the results of evaluating RSW puzzles. Memory-
hardness comes from the inability to delete the list, achieved
by computing hash functions over the list randomly and
iteratively.

Informally, the four-tuple of algorithms in the DIODON
function scheme (Gen, Sample, Eval, Asy):

o Gen runs in the similar manner as in the RSW puzzle

scheme, but outputs index with two additional parameters,

= (N, (k,1,u)), where k is for iterative squarings and

l is for iterative hashings;

o Sample works the same and outputs a preimage x;

o Eval takes in (N, (k,l,u)) and x, evaluates u RSW
puzzles and stores the results in a list V' = {Vi}icjy)»
where Vo = z and fori € {1,2,...,u—1}, V; = 22"
mod N. Notice that V; = fol mod N. Starting from

Vu_1, it computes an index j = V,_; mod u, and
hashes over V,_; and Vj. It then iterates [times with
the result from previous hash as input and sets the last
result as output y;

o Asy takesin (N, (k,l,u)), (V) and x. Instead of storing
the results of RSW puzzles, it computes every RSW
puzzle involved in the hash function with index 7 by
22" mod 6(N) mod N, After hashing for [times, it
outputs the last result as '

Given an RSA group Z};, parameters k,l,u, asymmetrical

key ¢(N) and a preimage x, Eval and Asy from [7] of the
DIODON function scheme go as follows:

Algorithm 1 The DIODON Evaluation Eval
Input: (N, (k,l,u)) and x;
Output: y.

V() =T

for all i € {1,2,...,u— 1} do
Vi = V2, mod N

end for

temp=1V,_4

for all s € {0,1,...,]—1} do
7 =temp mod u
temp = H (temp, V})

end for

: return y = temp

R A A S e

—_
=)
=}

Algorithm 2 The DIODON Asymmetry Asy
Input: (N, (k,l,u)), ¢(N) and z;
Output: 3.
1 e = 28— mod ¢(N)
2: temp = 2 mod N
3 foralli € {0,1,...,l—1} do
4 7 =temp mod u
s5: e; =2 mod ¢(N)
6
7
8

temp = H (temp, (z¢ mod N))
: end for
: return y = temp

For the DIODON function, we have the following lemma.

Lemma 2: A DIODON function scheme is a memory-hard
asymmetrically hard function.

Proof: Correctness of the DIODON function scheme is
by definition. Learning from Definition 7, we modify §(u)-
hardness to (t(k,l,u),d(w))-hardness, where t(k,l,u) rep-
resents the time complexity and d(u) denotes the memory
units consumed. Without the knowledge of ¢(N), by [16],
the DIODON function scheme is “optimally linearly memory-
hard”, which means i.e., t(k,l,u) x 0(u) is constant, i.e., Eval
either stores the whole list V' or saves memory for a factor f
but pay the same factor in time. Finally, Asy stores nothing
but runs in comparable time with Eval and outputs the same
result. Given all above, the DIODON function scheme is a
memory-hard asymmetrically hard function.

Remark (Parameterizability): As a summary of this sec-
tion, we extract “parameterizability” from §(u)-hardness in
Defintion 9. An asymmetrically hard function is parameter-
izable if the hardness is tunable without adjusting security
parameters. Adjusting the security parameter changes the gen-
eration’s initial inputs, affecting algorithms afterward, which
is not desirable in practice. Thankfully, ¢(u)-hardness (or
(t(k,l,u),d(u))-hardness respectively) is satisfiable in both
the RSW puzzle and the DIODON function, thus parameteriz-
able for both schemes. Henceforth, we specify the parameters
by denoting them as u-RSW puzzle and (k,l, u)-DIODON
function.

V. CONSTRUCTIONS

We start from a generic construction for the advice-
based PoW with trusted generators scheme and instantiate
with concrete building blocks from the previous section: the
RSW puzzle and the DIODON function for time-hard and
memory-hard constructions, respectively. The construction is
accomplished by the RSA problem representing the special
one-way trapdoor function. We show a sketch of the proof
that matches the definitions in Section III.

A. Generic Construction

The intuition behind the generic construction is that, in the
trusted generation phase, PGen uses a secret trapdoor td to
generate advice and solution before knowing the correspond-
ing aux and puz. The process from aux to advice is the
evaluation of asymmetrically hard functions, and the process
from puz to solution is to invert one-way trapdoor functions.
We adopt the notations from object-oriented programming: by
AHF and TDP, denoting the asymmetrically hard function
family and one-way trapdoor function family, respectively. We
omit 1* below, and for algorithms with no input after this
omission, we omit parentheses, e.g., Gen instead of Gen().

Construction 1 (Generic Construction): The triple of al-
gorithms (PGen, EvalSolve, Verify) of the advice-based PoW
with trusted generators scheme works as follows:

o A trusted third party runs Setup(1*,R):

— Run AHF.Gen(R) — (fanf, td), such that fyhf is an
R-hard asymmetrically hard function;

— Sample a <— AHF.Sample(fanf), such that a € Xy,
which is in the domain of fyps;

— Compute AHF.Asy(fans,tdf,a) — tdg, such that
tdy = fanf(a);

- Run TDP.Gen(td,) — gtdp for a one-way trapdoor
function giqp that has trapdoor tdg;

— Set outputs: pp = (fanf, grdp) and td = (tdy, td,)

o The trusted third party runs PGen(pp,td):

— Sample = < TDP.Sample(gtdp). such that x < X,
where X; is domain of giqp;

— Compute y < TDP.Eval(gdp, z) as the intance of
the puzzle;

— Set outputs: puz =y and aux = a.

o Provers run EvalSolve(pp, puz, aux):

— Phrase pp = (fanf, Gtdp)> PUZ = y and aux = a.

— Run advice «+ AHF.Eval(fanf,a) for the piece of
advice;

- Run z < TDP.Invert(gidp, advice,y) — for the
solution candidate;

— Set outputs as solution = .

o Any party can run Verify(pp, puz, solution) as verifiers:

— Phrase pp = (fanf, gtdp), Puz = y and solution = z.
— Output 1, if gqgp(2) = y holds, and 0 otherwise.

B. Concrete Constructions

We demonstrate a transformation from the RSA problem
and the RSW puzzle or the DIODON function to an advice-
based PoW with trusted generators scheme with time- or
memory-hardness. We take the RSA problem as the underlying
computationally hard problem, and the RSW puzzle and the
DIODON function as the alternative solving process (w). In
the concrete constructions, we slightly manipulate the generic
construction. An additional property (see remark below) in the
RSA problem enables us to have a simpler puzzle generation.

Construction 2 (Time-Hard Construction): Given a security
parameter A, a hash function hash : Zy — Z7};:

e In Setup(1*,R), phrase R = (Time,u). Sample two
prime numbers p, g of length A\, compute N = pq and
d(N)=(p—1)(¢—1). Sample a & Z}y , compute a,, =
a?" med #(N) mod N and hash it for d = hash(a,,). Set
outputs: pp = N and td = (¢(N),d);

o In PGen(pp,td), phrase pp = N and td = (¢(N),d).
Compute e, such that e-d =1 mod ¢(N). Sample y &
Z3% . Set outputs: puz = (N, e,y) and aux = (N, a);

o In EvalSolve(pp, puz,aux), phrase pp = N, puz =
(N,e,y) and aux = (N, a). Evaluate the u-RSW puzzle
on a and hash it for advice, i.e., advice < hash(a?"
mod N). Compute the solution candidate with =/ =
y2dvice mod N. Set outputs as solution = z';

o In Verify(pp, puz,solution), phrase pp = N, puz =
(N, e,y) and solution = z’. Output 1, if 2’° =y mod N
holds, and 0 otherwise.

Construction 3 (Memory-Hard Construction): Regardless
of the additional parameters in the DIODON function: i.e., k
for iterative squaring and [for iterative hashing, the principle
remains the same.

o In Setup(1*,R), phrase R = (Memory,u). Sample two
prime numbers p, g of length A\, compute N = pq and
¢(N) = (p—1)(¢ — 1). Sample a & Z};, evaluate an
(k,1,u)-DIODON function on a with ¢(N) = (p—1)(¢—
1) without consuming memory units, then hash it for d.
Set outputs: pp = N and td = (¢(N), d);

o PGen, EvalSolve, Verify remains the same.

Remark (RSA as Special One-Way Trapdoor Function): No-
tice that in Construction 1, the domain of asymmetrically hard
functions X is not necessary to be the same as the domain
of one-way trapdoor functions X;. Moreover, we clarify that
the generic construction works due to the modification on the

one-way trapdoor function families, enabling the TDP.Gen
algorithm to take in a trapdoor (td, in the generic case or d
in the concrete cases) and output the corresponding one-way
trapdoor function gyp. Although general one-way trapdoor
functions may not guarantee this, the RSA problem satisfies
such a property. Thus, it enables our concrete constructions
to be practical. Moreover, it provides an efficient puzzle
generation given e-d =1 mod ¢(N). However, by providing
users both e and d of an RSA problem, we open the door of
computing ¢(N) for the users, thus leads the Setup algorithm
of the advice-based schemes to be not reusable. We list the
constructions with the reusable generation phase as future
work.

1) Efficiency.: In practical implementations, parameters
should be chosen wisely to balance efficiency and security.
Start from an observation on lower bounds of solving the RSA
problem, given the general number field sieve algorithm [17],
considered to be one of the fastest algorithms for factoring
large integers. Although solving an RSA problem may not be
as hard as factoring [18].

Assumption 5.1: Given an RSA group Zj with N =
pq, |p| = |g| = A, and an instance of RSA problem (e, y),
for any algorithm Alg without p,q runs in w(2*/¢) time, the
probability of producing an z’, such that 2/ = y mod N is
negligible. Where c is a properly large coefficient.

Assumption 5.1 draws the line for soundness, thus we
adjust the parameters, v and 7' with a precise relation:
T(\u) < 2M¢. With this in mind, the efficiency of the
concrete constructions is as follows:

o Setup and PGen sample two elements from Z%,, compute
an RSW puzzle via asymmetrical evaluation, a hash
function, and an RSA evaluation. The cost is determined
by two exponentiations in Z%, thus in O(\)'.

o EvalSolve computes an RSW puzzle via regular evalu-
ation, a hash function, and an RSA inversion with the
inverse key. The cost is determined by evaluating the
RSW puzzle, which is u, thus matching the designed
difficulty T'(A, u).

o Verify checks the correctness of an RSA problem with
one exponentiation in Z%,. Thus the cost is in O()).

2) Proofs.: Without loss of generality, we give the proof
of soundness and hardness of the time-hard construction,
under Assumption 5.1 and Assumption 4.1. For difficulty,
we prove it with soundness, hardness, and a collision and
preimage-resistant hash. Thus completing the arguments from
Section III.

Theorem 1: Assuming the existence of a collision and
preimage-resistant hash function hash, Construction 2 of
advice-based PoW with trusted generators scheme with time-
hardness satisfies the following properties:

o Correctness. By Construction 2.
o Soundness. Under Assumption 5.1.
« Time-hardness. Under Assumption 4.1.

'O\ = O(\logF(N)) for some k.

« Difficulty. By soundness, time-hardness and the proper-
ties of the hash function hash.

Proof: Correctness is obvious due to the construction. We
prove soundness, time-hardness, and difficulty as follows:

a) Soundness.: Recall the generation of puz and aux
from Setup and PGen, the uniform sampling of @ and hash
guarantees the uniform distribution of d € Z7%, thus the uni-
formity of e. Moreover, z is also uniformly sampled from Z3;,
thus the uniformity of y. If an adversary intends to produce an
acceptable solution” with an arbitrary piece of advice’, which
by collision-resistance of hash, Pr[advice’ = d] < negl()). To
break soundness is to invert the RSA problem (N, e,y) with
no other information. By Assumption 5.1, even the adversary
runs in much longer than 7'(\,) but less than 2*/¢ cannot
invert (N, e, y), thus cannot produce an acceptable solution’.

b) Time-hardness.: Given an RSA problem (N,e,y),
the adversary queries {aux}, under its choice and obtains
{advice}, from the challenger. Such a pre-processing proce-
dure comes from the fact that the adversary can see poly-
nomial many (aux, advice) pairs from previous evaluations.
To break the time-hardness, the adversary needs to produce
a valid advice’ on the given aux*. However, as assumed in
Assumption 4.1, the probability that one can evaluate an RSW
puzzle plainly with less than §(u)-time is negligible. Moreover,
hash guarantees that collisions happen among {advice}, and
advice® with negligible probability. Thus time-hardness holds
for Construction 2.

c) Difficulty.: Recall our arguments in Section III. The
“advice unpredictability”, i.e., one cannot predict advice be-
fore fully evaluating on aux, is vital for the construction
to be difficult. Otherwise, the leaked information of advice
may accelerate the solving procedure of puz. With a hash
function hash, being collision-resistant and preimage-resistant,
any adversary tries to guess any bits in advice from aux
is equivalently breaking the preimage resistance of the hash
function. Consequently, the difficulty relies on the hardness,
i.e., if there exists an adversary who breaks the difficulty game
in Figure 2, we can construct an adversary that breaks the
hardness game in Figure 1. To prove this, we consider the
following tuple of games:

1) The difficulty game, where puz <— PGen is given to the
adversary at first step with corresponded R and pp;

2) An intermediate game, where puz’ is an arbitrary piece
of the puzzle such that independent with PGen, R and
PpP;

3) The hard game, where only R and pp is sent to the
adversary. We regard such situation as puz =_1.

Probability loss between each game is negligible of A. Thus
difficulty holds as long as hardness holds.

REFERENCES

[1] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” 1993, pp. 139-147.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
http://bitcoin.org/bitcoin.pdf.

[3] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Proofs of work
from worst-case assumptions,” 2018, pp. 789-819.

(4]
(3]
(6]

(7
(8]
[
[10]

(11]

[12]
[13]
[14]

[15]

[16]
(17]

(18]

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” 2017, pp. 357-388.
S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” 2015, pp. 585-605.

G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J.
Peterson, and D. Song, ‘“Provable data possession at untrusted stores,”
2007, pp. 598-609.

A. Biryukov and L. Perrin, “Symmetrically and asymmetrically hard
cryptography,” 2017, pp. 417-445.

R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” Cambridge, MA, USA, Tech. Rep., 1996.

D. Boneh, J. Bonneau, B. Biinz, and B. Fisch, “Verifiable delay
functions,” 2018, pp. 757-788.

A. Biryukov and D. Khovratovich, “Egalitarian computing,” 2016, pp.
315-326.

F. Coelho, A. Larroche, and B. Colin, “Itsuku: a memory-hardened
proof-of-work scheme,” Cryptology ePrint Archive, Report 2017/1168,
2017, https://eprint.iacr.org/2017/1168.

B. Wesolowski, “Efficient verifiable delay functions,” 2019, pp. 379-
407.

K. Pietrzak, “Simple verifiable delay functions,” 2019, pp. 60:1-60:15.
S. Popov, H. Moog, D. Camargo, A. Capossele, V. Dimitrov, A. Gal,
A. Greve, B. Kusmierz, S. Mueller, A. Penzkofer et al., “The coordi-
cide,” 2020.

M. E. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Trans.
Information Theory, vol. 26, no. 4, pp. 401-406, 1980. [Online].
Available: https://doi.org/10.1109/TIT.1980.1056220

J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro, “Scrypt is
maximally memory-hard,” 2017, pp. 33-62.

C. Pomerance, “A tale of two sieves,” Notices of the AMS, vol. 43,
no. 12, pp. 1473-1485, December 1996.

D. Boneh and R. Venkatesan, “Breaking rsa may be easier than factor-
ing,” 1998, pp. 59-71.

