IOHK Technical Report:
On UC-Secure Range Extension and Batch Verification for ECVRF

Christian Badertscher!, Peter Gazi', Ifiigo Querejeta-Azurmendi!, and Alexander Russell!

LJOHK, firstname.lastname@iohk.io

December 10, 2021

Abstract

This technical report contains three important results. First, it describes a simple construction
in the random-oracle model (ROM) that generically extends the range of a verifiable random
function (VRF) specified as a UC functionality. We prove our construction UC secure and show
that it can be used in Ouroboros to reduce the number of VRF evaluations (per slot) and VRF
verifications (per block) from two to one at the price of additional hash-function evaluations.

As a second result, we show that the Elliptic Curve VRF (ECVRF) construction, whose
standardization by the IETF is progressing, achieves the strong notion of UC security in the ROM.

Finally, we show how ECVRF can be tweaked and equipped with a batch-verification capability
for increased efficiency. We formalize the security goal of batch verification in UC and formally
prove the security of this construction in the ROM.

1 Verifiable Random Functions

We first define the syntax of a verifiable random function (VRF). We denote by x the security
parameter. The domain X and the range) of the VRF are finite sets represented by X = {0, 1}£(k)
and Y = {0, 1}v&F (%) respectively, where £(.) and fygrg(.) are functions of the security parameter.
For notational simplicity we often drop the explicit dependence on k.

Definition 1.1 (VRF Syntax). A verifiable random function (VRF) consists of a triple of PPT
algorithms VRF := (Gen, Eval, Vfy):

e The probabilistic algorithm (sk,vk) < Gen(1") takes as input the security parameter in
unary encoding and outputs a key pair, where sk is the secret key and vk is the (public)
verification key.

e The probabilistic algorithm (Y, 7) < Eval(sk, X) takes as input a secret key sk and X € X
and outputs a function value Y €) and a proof .

e The (possibly probabilistic but usually deterministic) algorithm b «— Vfy(vk, X, Y,) takes as
input a verification key vk, input value X € X, output value Y € Y, as well as a proof m, and
returns a bit b.

In the context of Ouroboros [DGKR18, BGK™18]], we need that the VRF algorithms implement
an ideal object that we call the VRF functionality. For security this means intuitively that all
outputs generated by the VRF algorithms are indistinguishable from outputs of a truly random
function—even to an attacker who could potentially craft its own private VRF key. We assume in
the following some familiarity with the UC framework [Can20].

—[Ideal Functionality f\g,’é‘éRF }

JFVrr interacts with its set of registered parties P denoted by Uy, ..., Ujp| and the adversary/simulator S.
It maintains tables T'[-,] that are initially empty (denoted by symbol L). The tables are initialized
on-the-fly. The functionality maintains a set Sy, to keep track of registered keys, and Seva) to keep track
of all known VRF evaluations.

e Key Generation. Upon receiving a message (KeyGen,sid) from U; s.t. (U;,-) € Spk,
hand (KeyGen, sid,U;) to S (ignore the request if (U;,-) € Sp). Upon receiving
(VerificationKey, sid, U;, v) from S:

1. If U; is corrupted, ignore the request.

2. If (U;,-) € Spr and V(-,0") € Spp @ v # v/, set Spp < Spr U {(U;,v)} and return
(VerificationKey, sid, v) to U;.

3. Else, ignore the request.
e Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, do the following:
ifV(-,v") € Spr r v # ', set Sp < Spr U{(S,v)}. Return the activation to S.

e VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid, m) from U;, verify that
some (Uj,v) € Sy is recorded. If not, then ignore the request. Else, send (EvalProve, sid, U;, m)
to S and upon receiving (EvalProve, sid, U;, m,) from S, do the following:

1. Ignore the request if the proof is not unique, i.e., if IT[v',m'] = (y',5’) such that = €
S'A((V £ v)V (m #m)).
2. If T[v,m] = L, assign y < {0, 1}* and set T[v,m] < {y, {7}}.
3. f Tlv,m] = (y,5) # L, set Tv,m] < {y,SU{r}}.
4. Set Seval ¢ Seval U {(v,m, y)} and output (Evaluated, sid, m,y,) to Us;.
e Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v, m) from S, do the following:
Case 1: 3(U;,v) € Spi where U; is not corrupted: let T[v,m| = (y,S). If S # 0, return
(Evaluated, sid, y) to S. Otherwise, ignore the request.

Case 2: (S,v) € Sy or I(U;,v) € Spk, U; corrupted: if T'[v,m] = L, first choose y <—g {0, 1}v=F
and set T'[v,m] < (y,?). Return (Evaluated, sid,y) to S

Else: Ignore the request.
e Verification. Upon receiving a message (Verify, sid,m,y,m,v') from any ITI M, send
(Verify, sid, m, y,m, V", Seval) to S. Upon receiving (Verified, sid, m,y, 7, v’, ¢) from S do:
Case 1: v = v for some (-,v) € Sp s.t. T(v,m) = (y, S) for some set S.
1. If 7 € S, then set f < 1.
2. Else, if ¢ =1 and VT[0,7m] = (v, S") : m ¢ S, then set T'[v,m] = (y, S U {r}) and
f+ 1

3. Else, set f «+ 0.

Else: Set f «+ 0.
Provide the output (Verified, sid,v’, m,y, 7, f) to the caller M.

e Adversarial Leakage [New compared to [DGKR18, BGKT™18]|. On input
(PastEvaluations, sid) from S, return Seya) to S.

Figure 1: The VRF functionality.

VRF as a UC protocol. Any verifiable random function VRF can be cast as a simple pro-
tocol myre in the UC framework [Can20] as follows: Each party U; in session sid acts as fol-
lows: on its first input of the form (KeyGen,sid), run (sk,vk) < VRF.Gen(1") and output
(VerificationKey, sid, vk) and internally store sk (and ignore key generation requests from now on). On
input (EvalProve, sid, m) (and if a key has been generated before) evaluate (Y, 7) <— VRF.Eval(sk, m)
and output (Evaluated, sid, Y, 7). (If no key has been generated yet, evaluation queries are ignored.)
On input (Verify, sid, m,y,m,v"), the party evaluates b < VRF.Vfy(v',m, y, 7) and finally returns
(Verified, sid, v', m,y, m, b).

Definition 1.2 (UC security of a VRF). A verifiable random function VRF (with input domain
X = {0,1}* and range Y = {0, 1}*v/F) is called UC-secure, if myrp UC-realizes f\é/’é‘,’:RF specified in
Figure 1.

The functionality captures all we want from a VRF, from correctness to security: the function
table corresponding to each public key is a truly random function (and thus also guarantees a unique
association of the key-value pair to output Y'), even if the adversary can pick its own crafted public
key. Furthermore, no wrong association can be ever verified and every completed honest evaluation
can be later verified correctly. Note that the functionality is based on [DGKR18, BGK™18], but
contains some modifications: first, verification is now more in-line with typical UC formulations
for (signature) verification, where the adversary is given some limited influence (in prior versions,
the adversary had to inject proofs in between verification request and response to accomplish the
same thing). Furthermore, the uniqueness notion for proofs has been correctly adjusted to catch
the corner case that schemes might choose to de-randomize the prover (akin signatures) which
is a crucial point later when we look at ECVRF. The remaining changes are merely syntactical
compared to [BGKT18]. If myrp UC realizes this functionality, then this means that the triple of
algorithms VREF is essentially computationally indistinguishable from this functionality and therefore
can be considered correct and secure.

Random oracles in UC. When working in the random-oracle model, the UC protocol above
is changed as follows: whenever VRF prescribes a call to a particular hash function to hash some
value z, this is replaced by a call of the form (EVAL, sid, z) to an instance of a so-called random
oracle functionality, which internally implements an ideal random function {0, 1}* —)’ and returns
the corresponding function value back to the caller. This functionality is specified in Figure 2. We
will often use the notation H(x) in the specifications to refer to a general hash function with the
understanding that this call will be treated as a random oracle call in the security proof.

2 Generic VRF Range Extension in the ROM

2.1 Specification

Let H:{0,1}* —) denote a general hash function. Let VRF be a verifiable random function with
input-value domain X and output domain Y.

We construct a VRF VRF with input-value domain X and output domain)¢ for a fixed
constant ¢ > 0. In the following, we let CONST;,# = 1,...,c¢ be ¢ fixed and pairwise different
constants (of fixed length) and || denotes concatenation of bitstrings. The algorithms are defined
as follows:

Key Generation: Key generation remains unchanged: VRF.Gen(1%) := VRF.Gen(1%).

Y
Fro

The functionality is parameterized by the output domain Y. It maintains a (dynamically updatable)
function table 7 (initially 7 = (). For simplicity we write T'[z] to denote the function value assigned to
z in the table T (if defined) and use the expression T'[x] =L to denote that no pair of the form (z,-) is
inT.

e Upon receiving (EVAL, sid, x) from some party U, (or from the adversary), do the following:

1. If T[z] = L sample a value y uniformly at random from Y, set T'[z] + y and add (z, T'[z])
to T.

2. Return (EVAL, sid, x, T'[x]) to the caller.

Figure 2: The random-oracle functionality idealizing a hash function {0,1}* —).

Evaluation: The algorithm VRF.Eval(sk, X) for X € X is defined as follows:

1. Run (Y,7) < VRF.Eval(sk, X).
2. Compute Y; < H(CONST; || Y).
3. Return the pair ((Y1,...,Y.), (7, Y)).

Verification: The algorithm ﬁF.ny(vk‘, X,Y, 7) is defined as follows, where X € X and Y € Y

1. Parse m = (7/,Y”) where Y’ € Y (return 0 in case of parsing error).

(2

2. Return b := VRF.Vfy(vk, X, Y’ 7') A (A Y; = H(CONST; || Y’)).
=1

Rationale of the construction. Before we cast the above construction in the provable security
parlance of Ouroboros [DGKR18, BGK 18], we provide here a non-technical justification of the above
construction. Assume that the underlying VRF provides all guarantees we informally demanded
above, then our construction enjoys basically the same properties: the correctness properties follows
from the correctness properties of the underlying VRF and the fact that H is a public function.

For security, we observe three properties for Y;: (1) it is unpredictable to anyone not knowing
the secret key, (2) it cannot be manipulated even by the owner of the secret key, and (3) it is
unpredictable to the owner of the secret key without evaluating the VRF. In particular note
that Y; can only be determined by someone who knows the value Y’ (since in the ROM, H is a
random function), and Y’ can only be computed by someone having the secret key and otherwise
is unpredictable thanks to the security of the underlying VRF. Furthermore, since H is a public
function, Y; is determined fully by Y’ (and the constant CONST;).

3 Security Analysis of the Range-Extension Construction

The required level of security of a VRF in the setting of Ouroboros is UC security. UC security
is a strong notion and this strength is the main reason why the above construction needs a more
formal security argument. In the following, we assume some familiarity with the security arguments

in [DGKR18, BGK'18].

3.1 Range Extension as a Modular UC Protocol

The construction VRF can be cast as a modular UC protocol Utyr=r= where we assume that the
protocol has access to the hybrid functionality f\é/’é‘l’:RF idealizing the underlying scheme VRF with
range {0, 1}*/¥) (and also access to the random oracle .7:13{0 to idealize H):

Each party U; in session sid acts as follows: on input (KeyGen, sid), relay this input to \%‘,’:RF
and when receiving the answer (VerificationKey, sid, vk) return this answer as output. On input
(EvalProve, sid, m) relay this input to \g/’é‘l’:RF and when receiving the answer (Evaluated, sid, Y,),
query, for i/in[1, c], the random oracle .7:13{0 with input (EVAL, sid, (CONST; || Y)). Let Y; be the ob-
tained answers. Then output the return value (Evaluated, sid, (Y1,...,Y.), (7, Y)). Finally, on input
(Verify, sid, m,y,m,v'), parse 7 = (7', Y') and y = (Y1,...,Yz) € {0, 1}V, If the format is wrong,
return (Verified, sid,v', m, y, 7, 0). Otherwise, query (Verify, sid, m, Y’ 7', v) to f\é/’é‘,’:RF and let the re-
turned decision bit be b. Then query the .7-%}0, for i/in[1, ¢, via (EVAL, sid, (CONST; || Y)) and denote

C
the RO outputs by v;. Then compute b’ < b A (ANY;, = yz> and return (Verified, sid,v', m,y, 7,).
=1

1=

3.2 The UC Realization Statement

The formal theorem of our range extension can be stated in very simple terms:

Theorem 3.1. Protocol my e UC-realizes f\é/’é',fVRF.

Proof. We first describe the simulator S for the so-called dummy real-world adversary that is
under the control of the environment Z.! The simulator interacts with functionality fé’é',fVRF and
simulates towards the environment a transcript that is indistinguishable from a protocol run of
TyRE where the environment interacts with parties running algorithms as specified in TURE and
additionally has access to the adversarial interface of the assumed (hybrid) functionality f\l;’é‘,’:RF and

the random-oracle functionality .7-%}0. The simulator internally emulates an execution of f\g/’é\,’:RF and
emulates the random oracle by maintaining a function table H[z| (initially empty).
Reaction on requests from f\g/’é'lfVRF. We first define the simulation upon the different outputs

of f\é/’é',fVRF (provoked as reactions of inputs by honest parties).

On (KeyGen, sid, U;): Then obtain a new verification key from the emulated instance FEIRE: that

VRF
is, ask the environment to provide a new key vk; and return (VerificationKey, sid, U;, vk;) to
]_‘\g/lg"fVRF'

On (EvalProve, sid, U;, m): The simulator obtains the output (y,7) on input m from its simulated
instance f\é/’é‘,’:RF; this means it first obtains a proof 7 from the environment and then sampling
a new value y € {0, 1}€/RF at random provided m has not been asked before. Then, the
simulator defines 7’ := (7, y) and returns (EvalProve, sid, m,7’) to f\l;’é',fVRF. The simulator

stores internally (PROG, i, m,y) to prepare for programming the RO.

On (Verify, sid, m,y,,v', Seva1): The simulator first checks for new entries (PROG, i, m,y) added in
previous activations. For each of these entries, it parses the set Sevar of all previously evaluated
VRF values to obtain (v;, m, (y1,...,%.)) where (yi,...,y.) € ({0,1}v®F)¢ and assigns for
each of these new entries the random-oracle value H[(CONST; ||y)] < y;, j = 1,...,n if the
locations x; = (CONST; ||) have not been programmed already. If such an assignment is not

"We point out that a UC proof w.r.t. this adversary implies security against any adversary.

possible because the location (CONST; || y) have already been programmed with different values
y; respectively, then abort the simulation. We call this event SIMFAIL.

Next, the simulator parses y as (y1,...,9.) and 7 as pair (7’,y’) and verifies the combina-
tion (m, ', 7’,v") using the internally emulated functionality f\l;’é‘,’:RF. Part of this is sending
(Verify, sid, m,y', m,v", S. .,) to the environment (for the set S/ ., maintained by the inter-
nally emulated functionality), and when the environment returns the verification result
(Verified, sid, m,y', 7', v’,b') to this query, S provides this input to its internally emulated
instance. It then checks that y; = H[(CONST; ||y/)] for all ¢ = 1...c. If all checks are fulfilled
S sends the reply (Verified, sid, m,y,m, v',b) to f\l;’é',fVRF. If any check fails, it sends the reply

(Verified, sid, m, y, 7,1, 0) to Fyat ™.

Interaction with environment (adversarial interface). = Whenever invoked with an input
from the environment, the simulator first checks for new entries (PROG, i, m,y) added in previous
activations. It thus first obtains the set via query Seyval (PastEvaluations, sid) to f\l;’é',fVRF. For each
of the entries (PROG,i,m,y), it parses the set Seya1 of all previously evaluated VRF values to obtain
(v,m, (Y1, ... ye)) for (y1,...,ye) € ({0,1}V"F)¢ and assigns HI[(CONST; ||y)] v, j=1,...,n,if
the locations x; = (CONST; || y) have not been programmed already. If such an assignment is not
possible because the location (CONST; || y) have already been programmed with different values y;
respectively, then abort the simulation. We call this event SIMFAIL.

Whenever the environment asks for an RO-evaluation for a new value z, then S samples a value
y € 0, 1}€/RF at random and assigns H|[z] < y. If a function value for x is already defined, then
return H[z].

Whenever activated by (KeyGen, sid, v) from the environment, S provides this as input to the

f\g,’é',fVRF on input (KeyGen, sid, v) and returns whatever is

internally emulated instance and invokes

returned by the functionality.
Whenever activated with (Eval, sid, v, m) from Z (malicious evaluation of the underlying VRF

functionality), S emulates this input on the internally emulated functionality \%‘,’:RF. When a

simulated value y is obtained, then S invokes f\l;’é',fVRF with (Eval, sid, v, m) to receive the function
values (y1, ..., y.) it sampled for m (and w.r.t. v) and S programs the RO by setting H[CONST; || y| +
y; for i = 1, ..., c unless the locations have already been written to with different values. As above, if
such an assignment cannot be made because the location (CONST; || y) have already been programmed
with different values y; respectively, then abort the simulation (even SIMFAIL). Finally, return to 2
with output (Evaluated, sid,).

When activated with input (PastEvaluations, sid) or with verification requests or verification
results towards the internally emulated functionality f\é/’é‘,’:RF, then provide the received input to the

emulated instance of f\é/’é‘l’:RF and return to the environment whatever the emulated instance outputs.

Finally, whenever a party is corrupted, S corrupts the corresponding party in fé’é',fVRF and marks

it as corrupted in its internally emulated instance of fé’é‘,’:RF.

Analysis of the simulation. We observe that the simulation only fails in case it has to abort.
The probability of event SIMFAIL corresponds to the probability that a location x = (CONST; || y)
of the random oracle has been evaluated before the simulator could program it correctly with the
value y; chosen by the ideal functionality. This probability is, however, negligible since upon each
new evaluation of an honest party, the value y simulated by S is chosen uniformly at random. The
probability of a collision with any previously queried value ' = (CONST; ||%') is negligible. As long as
the simulator does not abort, it exactly mimics TR it internally simulates the underlying hybrid

% StakingProcedure(. ..)

The following staking procedure is executed by party p. We highlight the usage of the VRF functionality and how the
block is created.

Send (EvalProve, sid, n; || s1 || NONCE) to Fyrr, denote the response from Fyre by (Evaluated, sid, yp, 7p).

Send (EvalProve, sid, n; || s1 || TEST) to FvRrF, denote the response from Fyrr by (Evaluated, sid, yr,).
___ =

Send (EvalProve, sid, n; || s1) to]—“E 2t - VRF: obtain response (Evaluated, sid, (yp,yr), 7)., (S1)

1f yr <71, °P then

Create new valid content for the block st (for details see [BGKT18]). > Local ops, party does not lose activation.

A
I Set crt = (Up,yr,m), p = (yp, @) and h < H(head(Cioc)).' (52)

Send (USign, sid, Up, (h, st,s1, ert, p), sl) to Fkes; obtain (Slgnature sid, (h, st, s1,crt, p),sl, o). > This call
returns immediately and lh(party does not lose activation.
Set B < (h,st,sl, crt, p,o) and update Cioc ¢ Cioc || B-
Send (MULTICAST, sid, Cioc) to]:1[\)'3\1(1 and proceed from here upon next activation.
else

end if

Figure 3: Staking procedure (excerpt).

VRF functionality and ensures that whenever a proof 7 is defined to be a valid proof (w.r.t. oy ZVRF)
for output value y on input m (for some party resp. verification key), then (7,y) is a valid proof for
m for the vector (y1,...,y.) that fééfVRF samples for that same party resp. verification key. This

establishes the claim. O

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used
in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be
answered immediately? This is a useful modeling property and we refer to [CEK*16, BGK ' 18] for
the relevant details, as they are outside the scope of this paper.

4 Usage of the Range-Extension Construction in Ouroboros

The purpose of this section is twofold: first, we show how to define formally the staking procedure
of Ouroboros using the extended VRF functionlaity and we have to argue about the security. Next,
we apply the composition theorem and show how the construction offers room for optimizations.
The two most important places where VRF evaluation and verification happens are the staking
procedure, cf. Figure 3 (for full details, we refer to the original papers), and the procedure to verify
chains, cf. Figure 4, respectively. In each case, we show how the introduction of Fjg ¢ ZVRF affects the
eode We deplet in [gray boxes the original code which is no longer needed and is deleted. The

Security. The reader might have noticed that we have proven the statement with a slightly
different (weaker) VRF functionlaity than what is used in [DGKR18, BGK'18]. The reason is
that the range extension does not work for the stronger functionality presented there. However,

2That is, without activating any other machine for any other purpose than providing the answer back to Fyre.

~ IsValidChain(...)

Instructions to parse a chain and a first bunch of syntactical validity checks (see [BGK1 18] for details).

for each block B in C from epoch ep with epoch randomness 7ep do
Parse B as (h,st,sl,crt, p, o).

Parse crt as (Uy,yr, nr) for some p'.

L l
1 Parse crt as (U, yr,) for some p'.
|

(V1)

________________ 1
o (V2)
________________ -
Send (Verify, sid, nep || s1 || TEST, yr, 7T, v;ff) to FyRrr; obtain response (Verified, sid, nep || s1 || TEST, yr, w7, b1).
Send (Verify, sid, nep || s1 || NDNCE,yp,‘lrp,'U;,rf) to Fyrr; obtain response (Verified, sid, nep || s1 || NONCE, y,, 7p, b2).

1 Send (Verify, sid, nep || 51, (yT,yp),w,v;ff) to féﬁ#eVRF; obtain (Verified, sid,v;’,‘"f, Nep || 1, (Y7, 9p),m,b)., (V3)

1 Set badvrf < (b =0Vyr > T;p’,c). 1 (V4)
p |
-

Further instructions to verify a block (see [BGK 18] for details).

end for

Figure 4: Chain validation (excerpt).

the functionality Fyvre that we put forth here is sufficient to prove the security of Ouroboros by a
straightforward inspection of the staking procedure.?

Consider Figure 3. First, we observe that thanks to the range extension, we can simply deal
with one VRF invocation. The protocol needs two verifiable random values: first the value yr to
determine slot leadership, second the value y, which contributes to the epoch randomness of the
future epoch. We obtain both these values in one go from f\g/’éifVRF. The functionality, however,
has a weakness: it allows the adversary to learn the output values (yr,y,), but only after the call
returned to the party with value (Evaluated, sid, (y,,yr), 7). In other words, the adversary is only
able to learn the output values (yr,y,) from functionality f\l;’éifVRF (via input (PastEvaluations, sid)
or via a subsequent verification query) only once the party loses or gives up its activation token. The
original formulation of Fygrr in [DGKR18, BGK 18] guaranteed that Jyrr never by itself would
leak this. But now we see that this change is immaterial to the security of Ouroboros: the party,
once the values (yr,y,) are obtained, it never loses the activation until it multicasts the block on
the last depicted instruction in Figure 3. At this point, however, the function values are revealed to
the adversary “for free”, as we multicast the values over the Internet. Since there is no additional

security concern regarding verification, we conclude that the introduction of f\é/’é‘,’:RF is sound.

*Note that any VRF that realizes the stronger functionality also realizes the weaker one presented here. Therefore,
any previously deployed VRF can be used as the basis of our range-extension construction.

Implementation and Optimization. After showing security, we now can invoke the UC com-
position theorem by which we can securely replace the modular invocation of fé’éifVRF by the
construction based on VRF and H. We now showcase what this means for the protocol and how one
can apply optimizations at several places. Consider again Figure 3 (and the lines S1 and S2) as
well as Figure 4 (and lines V1 to V4).

S1: This line is implemented by evaluating (y,m) < VRF.Eval(sk,,7; || s1) and then defines
yr < H(TEST||y) and y, <— H(NONCE || y).

S2: In this line, we can apply an optimization: we can set crt = (U, (y, 7)) and set p = € (empty
string). The reason is that whenever the protocol needs the verifiable values yp and y,, they
can be computed on-the-fly based on the knowledge of (y,), i.e., the output VRF.Eval(.).
Thus, storing (y,m) in a block is sufficient. This also means that computing y, above is
actually not needed in the staking procedure.

V1,V2: Here, we can apply an optimization and in view of the above parse crt = (Up, (y, 7)) and
recompute the values yr < H(TEST || y) and y, < H(NONCE || y).

vrf

V3: This line can be implemented by just computing b := VRF.ny(vp,
recomputed the values yr and y, above in V1,V2, b = 1 directly implies the validity of yr

and y, for input 7ep || s1 and w.r.t. verification key v;ff.

,Mep || 81,4, T). Since we

V'4: This line is implemented using the recomputed value of yr.

As a final remark note that when computing the epoch randomness at an epoch boundary
based on a sequence of valid blocks, then the contribution of a block B <« (h, st, s1,crt, p, o) to the
epoch randomness must be recomputed based on crt = (Up, (y, 7)) analogously to above, i.e., by
computing y, < H(NONCE ||).

In summary, this shows that we have reduced the number of VRF evaluations (per slot) and
VRF verifications (per block) from two to one, at the price of an additional hash function evaluation
in each case.

5 The ECVRF Standard

This section recalls the elliptic-curve based schemes described in the draft-irtf-cfrg-vrf-10
IRTF draft [GRPV] and focuses on the cipher suites suite_s € {0x03,0x04} for the sake of
concreteness. We begin by introducing notation and general functions.

5.1 Notation

We denote by E(FF,) the finite abelian group based on an elliptic curve over a finite prime-order
field F), (note that we simplify the notation and drop the explicit dependency on F, and security
parameter). Most importantly, we assume the order of the group E to be of the form cf - ¢ for
some small cofactor cf and large prime number ¢, and that the (hence) unique subgroup G of order
q is generated by a known base point B, i.e., G = (B) (q is represented by = 2k bits) in which the
computational Diffie-Hellman (CDH) problem is believed to be hard. Group operations are written
in additive notation, scalar multiplication for points P € E is denoted by m « P = P+ --- 4+ P,

—_————

m
and the neutral element by O = 0% P. We use a <—¢ S to denote that a is selected uniformly at
random from a set S. When working with binary arrays, a € {0,1}*, we denote by a[X..Y] the

slice of a from position X till position Y — 1. Moreover, we denote by a[..X| and a[X..] the slice
from position 0 till X — 1 and from X till the end respectively. As usual, the operator || denotes
concatenation of strings, such that, given A = 0|1, we have that A[..1] =0 and A[l..] = 1.

The standard makes use of helper functions, all of which are defined and introduced in [GRPV].
For sake of simplicity we state the specification of the security-relevant helper functions and show
how they are modeled later on in the security proof.

Hash: This is a concrete hash function which will be modeled as a general hash function, respectively
a random oracle, H : {0,1}* — {0,1}*®®)_ in the analysis. Conveniently, we choose (k) = 4.

ECVRF_hash_to_curve: This is a particular hash function (specified by the cipher suite) that takes
an arbitrary string S € {0,1}* as input, and hashes it to a point in the prime order group G.
Specific details of this function can be found in [GRPV]. This function will be modeled as a
separate random oracle Hga. : {0, 1}* — G in the security proof.

Expand_key: This function takes as input a secret seed sk € {0,1}2%, and returns a pair (sko, sk1) €
{0,1}%F x {0,1}2%. The specification prescribes that the seed is hashed hg < Hash(sk), and
that the pair (hgi[..2k], hsi[2k..]) is returned. The function can thus be modeled as a very

simple, random key-derivation function KDF : {0,1}** — {0, 1}** based on the random oracle
directly as KDF(sk) := H(sk).

ComputeScalar: A helper function used to derive the secret exponent from a (random) bitstring
s € {0,1}?¢. The output domain of this function is a set S C [|G]] of size 22%~¢, for some
small constant ¢, and ComputeScalar(X) is the uniform distribution on S, where X is the
random variable with the uniform distribution over 2« bistrings.

ECVRF_nonce_generation: A function that derives a nonce k € Z, from a pair (sk, H) € {0, 1}** xE.
Internally, the algorithm first extends the secret key into a pair of random strings (sko, sk1) =
Expand_key(sk). It then appends to sk; the given input, H, in binary form and computes
k < Hash(sky || H) (that is, interpreting the bitstring as an integer) and returns £ mod q.
More details can be found in section 5.4.2.2 of the standard. As we elaborate later, the
distribution of the function RFGT(H) := H(sk1 || H) mod ¢ derived from a random oracle
(again interpreting the output as an integer) has negligible statistical distance to the distribution

obtained from choosing a function uniformly at random from the set of all functions F' : E — Z,.

ECVRF_hash_points: A function that takes as input four EC points, A; € E for i € {1,...,4},
and hashes them (together with some padding), into an integer of x bits. In more de-
tail, the points are interpreted in binary form and hashes them into a binary array r <
Hash(suite_s||0x02|| A1 || A2 || A3 || A4 || 0200) (where the “wrapping” constants are domain
separators). Finally, the string r[..x| is returned. This is the helper function to instantiate
the Fiat-Shamir heuristic, which computes a challenge in a sigma protocol by hashing the
transcript. In the security proof, this will thus be treated as the random-oracle evaluation
H(suite_s || 0202 || A1 || A2 || A3 || A4 || 0200)]..x]. The associated challenge space is thus the
set C := {0, 1}" interpreted as integers.

To give a concrete example, the deployed VRF construction in Cardano is instantiated with
K = 128 and elliptic curve curve25519 which has cofactor 8. The prime order ¢ is represented by 32
octets, or more precisely 253 bits, and the hash function is SHA512 : {0,1}* — {0,1}%'2. For the
function ComputeScalar(sky), the string is first pruned: the lowest three bits of the first octet are
cleared, the highest bit of the last octet is cleared, and the second highest bit of the last octet is set.

10

This buffer is interpreted as a little-endian integer, forming the secret scalar x, which results in an
output domain containing 22°! different elements.

5.2 The VRF Algorithms

The formal definition of a VRF in Section 1 describes the Eval function, as the function that
computes the output of the VRF evaluation, together with its proof. In this section the two actions
are treated separately to follow the approach taken by the standard, and define the functions Prove
and Compute to represent the proof generation, and the output computation respectively. The
algorithms from the standard are given as follows:

Gen(1%): Let sk <—g {0,1}2%. Derive a scalar from sk as follows:

1. Let (sko, sk1) < Expand_key(sk).
2. x < ComputeScalar(sky).

Compute vk < z * B. Finally, return sk, vk.
Eval(sk, X): The evaluation is a two-stage process:

1. m < Prove(sk, X)
2. Y < Compute(m)
3. Return (Y, 7)

where:

Prove(sk, X): The proof generation consists of the following steps:

1. Using sk, derive the public key vk, and the secret scalar z, as described in Gen(1%).
Let H < ECVRF_hash_to_curve(vk, X).
Let I'<—zx H.

Compute a nonce k < ECVRF_nonce_generation(sk, H).

O W

Compute the challenge by hashing the transcript. To this end call the helper function
ECVRF_hash_points(H,T',k * B,k « H) and interpret the result as an integer in
little-endian representation, c.

6. Compute the response s < (k+ c¢*x) mod ¢
7. Let m<T'||c]s.

8. Return 7.

Compute(m): The VRF output computation goes as follows for a (proof) string 7 =T'||...:
Precondition: T' € E.4

1. Output Hash(suite_s ||0z03]| (cf *I') || 0200), where cf is the co-factor (in case of
curve25519, this cofactor is 8) and again domain separation is applied.

Vfy(vk, X,Y,m): Verification proceeds as follows:

1. Check that vk € E, and then that cf * vk # O, otherwise output 0 and halt.’

41f not fulfilled an implementation could signal an error by returning an error symbol ERR ¢ V. For the analysis,
this is not needed as the protocol ensures the precondition and the adversary is free to invoke the hash-function at will.
5This check excludes low-order elements, i.e., P € E, ord(P) < q.

11

2. Parse 7 as tuple (I',¢,s). Check that T' € E. If this check fails, output 0 and halt.
Interpret the k bits of ¢ and the 2k bits of s as little-endian integers. If s > ¢, output 0
and halt.

Let H < ECVRF_hash_to_curve(vk, X).
Let U < s*x B — ¢ * vk.
Let V<« sxH —cxI.
Let ¢’ < ECVRF_hash_points(H,T,U, V)

NS e w

If ¢ = ¢ output b:= (Y = Compute(r)); otherwise output 0.

6 Batch Verification for ECVRF

In the interest of performance, we study the possibility of batch-verifying the proofs generated by
ECVRF. To this end, we describe slight modifications that allow for an efficient batch-verification
algorithm. Next, we prove that batch-verification does not affect the security properties of individual
proofs, and therefore conclude that the presented modifications in this section does not affect the
security properties of Ouroboros. We divide the exposition of the changes in two steps. First, we
present the changes on the protocol (involving the prover and the verifier) to make the scheme
batch-compatible. Secondly, we describe the specific computation performed by the verifier to batch
several proof verifications. We note that a mention of this technique first appeared in the mailing
group of the IRTF draft [Rey]. However, as far as we know, there has not been a formal description
of this technique, nor the required analysis of such changes. This section covers these gaps.

6.1 Overview

To achieve an efficient batch of the verifications, the single operations which can be improved by
computing them for several proofs are steps 4 and 5 of the verification algorithm. We can achieve
an important improvement if, instead of computing sequential scalar multiplications, we perform a
single multiscalar multiplication for all proofs that are being verified. This batching technique was
already introduced by Naccache [NMVR95], and later used by Bernstein [BDL'12] for signature
verification batching. However, this trick can only be exploited if steps 4 and 5 are equality checks
rather than computations. As it is currently defined, the verifier has no knowledge of points U and
V', and computes them with steps 4 and 5. If, contrarily, the prover included points U and V in the
transcript and the verifier simply checked for equality, then the multiscalar optimisation could be
exploited.

We first describe the changes that make the batching possible and then proceed with the actual
description of the batch-verification.

6.2 Making the scheme batch-compatible

As introduced above, in order to allow batch verification, steps 4 and 5 need to be equality checks.
This requires a change in step 7 of Prove, changes in steps 2, 4, 5, and 7 of Vfy. Also, we need to
move the challenge computation from step 6, to somewhere in between step 3 and 4 (we call it step
3.5). In summary:

Prove(sk, X): The proof generation is the same except for step 7, which now has to be:

7. Let m«<T||U||V]|s

12

Compute(m): The procedure Compute remains unchanged, as we leave the first element of the proof
string unchanged.

Vfy(vk, X,Y,m): Verification proceeds as follows:

1. As before.

Parse 7 as tuple (I', U, V, s). Check that I', U,V € E. If this is not the case, output 0 and
halt. Interpret the 2k bits of s as a little-endian integer. If s > ¢, output 0 and halt.

o

3. As before.
3.5. Let ¢ + ECVRF_hash_points(H,T',U, V).
4. Check if U = s * B — c x vk.
5. Check if V=sxH —cxT.
6. [Moved to step 3.5]
7. If both equality checks in steps 4. and 5. succeeded, output b := (Y = Compute(7));

otherwise output 0.

This change has no implications on the security of the scheme. Note that it is common for
(Fiat-Shamir-transformed) 3-protocols to send the commitment of the randomness (sometimes
called the announcement) instead of the challenge.® Sending the challenge instead of the two
announcement is simply a communication complexity and efficiency decision. In the sequel, we refer
to the scheme that includes the above modification by ECVRF.

6.3 Batch-Verification

The changes described above allow for batch verification. To see how this is possible, we first note
how steps 4 and 5 can be combined into a single check. In particular if steps 4 and 5 validate, then
so does the following equation:

O=r«*(sxB—cxvk—U)+lx(sxH—cxI'=V)

where r,[are random scalars chosen by the verifier. The reverse is also true with overwhelming
probability, given that 7,1 are taken uniformly at random from a set of sufficient size (in particular,
we choose the set C for convenience). Using the state of the art multi scalar multiplication algorithms,
using this trick for batch verification considerably improves the running times. In particular, assume
that there are n different ECVRF proofs to verify. The verifier needs to check if the following equality

relations
U; = s; x B — ¢; vk,
Vi=s;*H; —c; %I}

hold for each of the proofs. This can be merged into a single equality check
O=ri*x(si*xB—ci*xvk; —U;)+1;*(s;x Hi —¢; x; = V;)

for i € [1,n]. The performance boost comes when we combine all these individual checks into a
single verification. In particular, the verifier could compute the following single check

0= Z (r; x (s;* B—c¢; xvk; —U;) + lix (s;« Hy — ¢; xT'; — V)
i€[1,n]

6As a matter of fact, ed25519 [BDL'12] is also a sigma protocol and encodes the announcement instead of the
challenge in the non-interactive variant of this sigma-protocol.

13

where 7; and [; are random scalars.

Note that when a batch is invalid then we need to break down the batches to determine which is
the invalid proof. However, in several practical cases (such as validating the state of a blockchain),
when multiple VRFs need to be validated in a batch we expect most of the time all of them to be
valid, making this risk reasonable in practice.

To avoid including the additional requirement for the verifier to have a secure source of random-
ness, we proceed with a description of how the (pseudo) random scalars can be computed using a
hash function in the random-oracle model.

Computing Pseudorandom Coefficients. It is of interest to maintain the deterministic nature
of the ECVRF verification intact. If for batch verification we require a source of randomness for
verifying the equations, this determinism would be lost. Hence, we explore what would be the
best way to compute this randomness in a deterministic manner. The important property of this
deterministic (pseudo) randomness generation is, similar to the known Fiat-Shamir heuristic for
Sigma-protocols, that the value (or seed) cannot be known to the prover when defining the proof
string. To this end, we compute the pseudo-random scalars by hashing the contents of the proof
itself, the value of H for the corresponding public key and an index.

In particular, we compute [; and r; as follows. For a batch proof of proofs 71, ..., m,, we compute,
for i € [1,n]:

o i« H;||m,

/
n’

o Syl n
e [; < Hash(suite_s || Ox4c||i|| St || 0200)[..x], and
e 7; < Hash(suite_s||0252||i|| St || 0200)][..x],

where Ox4c and 0x52 stand for “I” and “r”, respectively, in the domain separators. I; and r; are
treated as little-endian integers and are thus picked from the domain C as the challenge defined earlier.
As before, the security analysis will treat both invocations as evaluations of the random oracle H(-),
i.e, as H(suite_s||Ox4c||¢|| St || 0x00) and H(suite_s||0x52]|%|| ST || 0200), respectively.

Summary and specification. In summary, batch verification of a sequence of tuples T; =
(vk;, X;, Y, m;), 1 =1,...,n, encompasses the following steps:
1. Perform the basic consistency check for each T;, i = 1,...,n:

e Verify that vk; € E and then that cf x vk; # O.

e Parse and verify 7; as tuple (T, U;, Vi, si) € E3 x Z, (cf. Section 6.2, Step 2. of Vfy(.)).
e Compute H; < ECVRF_hash_to_curve(vk;, X;).

e Compute ¢; < ECVRF_hash_points(H;,I';, U;, V;).

2. If any of the above check fails then return 0.
3. Perform the batch verification:

e For all i € [n] evaluate:
— Set 7 < H; || m; for all i € [n],
— Let Sp <7l || ... ||,

14

— l; < Hash(suite_s || 0z4c||i|| St || 0200)][..x],
— r; < Hash(suite_s || 0252 ||| S7 || 0200)]..5],
and interpret [;, r; as little-endian integers.

e Evaluate
b1 + (O: Z(ri*(si*B—ci*vk‘i—Ui)+li*(si*Hi—ci*Fi—T/i)))
i€[n]
4. Evaluate by < (Vi € [n] : Y; = Compute(7;)).

5. Output by A bo.

7 Security Analysis of ECVRF and Batch Verifications

We first analyze the security of the standard without batch verifications in the next section and
prove the security including batch verifications afterwards.

7.1 Security Analysis of ECVRF

We first recall some preliminaries about zero-knowledge proofs of knowledge for a generic class of
protocols.

7.1.1 On X-Protocols for Group Homomorphisms

We recall here a general class of zero-knowledge proofs of knowledge, namely the three-round protocols
that prove the knowledge of a preimage of a (presumably one-way) group homomorphism [Maul5].
Consider two groups (H, o) and (T, x) together with a homomorphism f : H — T, i.e.,

flzoy) = f(x)* f(y).

Let Ry be the relation defined by (z,z) € Ry 1<+ f(x) = z. Consider the following three-round
protocol between prover P and verifier V' for the language Lg, := {2 |3z : (z,2) € Ry}. That is,
the common input is the proof instance z € T (and the relation Ry), where the prover is supposed
to know a value z € H s.t. f(z) = z.

1. P — V: P samples k <—¢ H and sends t := f(k) to V.
2. V. — P: V picks at random an integer ¢ € C C N and sends it to P.

3. P—V: P computes s := koz®and sends s to V. V accepts the protocol run if and only if
the equality

fls)=t*z°
holds.

The security of this protocol follows from the following lemma:;:

Lemma 7.1 ([Maul5]). Let Ry a relation as described above relative to a group homomorphism
J +H —T. The above protocol is a ¥-Protocol for the language Lg, if there are two publicly known
values £ € 7, and u € H s.t.

15

1. Ve,d €C,c#: ged(c— ' 0) =1, and
2. f(u) =2~
Proof Sketch. We give an outline of the proof of [Maul5]. We need to prove three properties:

e Completeness: The property that on input z and private input « with (z,2) € Ry, then an
honest execution always accepts. This is clearly satisfied.

e Special soundness: From any z and any pair of accepting conversations for z denoted
(t,c,s),(t,c,s') with ¢ # ¢, one can efficiently compute = such that (z,z) € Ry. The
protocol satisfies this. The solution is

and a and b are computed using the Extended Euclidean algorithm (EEA) as solutions to the

equation fa + (¢ — ¢)b = 1 over the integers. Note that f(s' ' os) = 2¢¢ and

F(@) = fu®o (51 0s)) = F(u)* (51 o5t = platle=chb — ;.

e Special honest-verifier zero-knowledge: the property that there is an efficient simulator S such
that on input z € Ly, and a random challenge ¢ € C, it generates an accepting conversation
(t, ¢, s) with the same probability distribution as generated by a conversation between honest
prover P and honest verifier V' on common input z and private input z (s.t. f(x) = z) for P.
This is achieved by the above protocol: given a challenge ¢ and the statement z, the simulator
selects s € H at random, computes t := f(s) x z~¢ and outputs (¢, ¢,).

This concludes the proof sketch. O

The lemma implies that the protocol is a proof-of-knowledge with knowledge error 1/|C|. For
our analysis, we only need the implication that if we have a statement 2 ¢ Lg,, then the probability
that a malicious prover convinces the verifier is at most 1/|C|, as in this case, no extractor can exist.
We implicitly assume that any fun is rejected if the values do not belong to the expected domain.

On domain checks of the proof instance. The above protocol assumes that the values are
indeed in the domain of interest as in particular the existence of values u € H and ¢ € Z Lemma 7.1
could depend on the group order of T (such as the one discussed below). We need to relax the
relation a bit if domain checks on the instance z € T are omitted.” This is especially relevant if T is
a subgroup of some larger group T’ s.t. the protocol could be run on input z € T’ \ T by a dishonest
party while the verifier does not perform a domain check for z € T (but only for z € T').

Corollary 7.2. Consider the X-Protocol as in Lemma 7.1 in the above setting, where an honest
prover aborts on instances z € T'\ T and otherwise executes the protocol. The protocol is a zero-
knowledge proof of knowledge for relation Ry as above on instances z € T, and additionally, it
provides special soundness on instances z € T'\ T for the relation (z,x) € Ry, 4> f(x) = 2° if we
can firw € H and ¢ € Z as above such that

"Note that the expected security guarantees indeed become weaker: consider a cyclic group (g) of order 2¢ with
g >2and let T = (h := g*) be a subgroup together with the homomorphism f(x) = h® (which is the instantiation to
obtain the typical Schnorr DL-proof). A malicious prover might choose the instance z = h® x g? and with probability
1/2 the challenge ¢ is even in which case the correct answer is s := k + cz as f(s) equals f(k) x 2°. Still z is not a
power of h (z has order 2¢) and thus no x can exist such that (z,z) € Ry.

16

1. Ve,d €C, c#: ged(c— ', 0) e, and
2. f(u) =2~

Proof. We find the greatest common divisor of £ and ¢/ —c and let it equal g. We further obtain values
a,bs.t. la+ (¢ —c)b = g by the EEA. By the same reasoning as above, & := u®o (s'~! 0 s)" satisfies
f(x) = 29. Now, we assume that e = d - g for some d, thus = := % and f(z) = f(z)? = 2°. O

If for each instance z € T' we can identify such an exponent e, the protocol can be assumed to
be sound for any z in the sense that the probability of passing a protocol run on an instance z such
that z¢ has no preimage under the homomorphism, is at most 1/|C]|.

Non-interactive Y-Protocols. A standard result about X-protocols is that they can be made
non-interactive (via the Fiat-Shamir transform) in the random-oracle model while preserving
soundness and zero-knowledge. Consider the proof w.r.t. a given instance z. A prover P can,
instead of sending the first message to the verifier, evaluate H(¢) to obtain a random challenge ¢
and conclude the proof by generating the string s as above. The proof string can be represented by
(z,t,s). A verifier can thus verify the proof by calling the oracle on input ¢ to obtain the challenge ¢
and verify as in the protocol above.

Soundness is preserved since talking to the verifier is equivalent to talking to the random oracle.
As long as the number of random-oracle queries is limited and the challenge space is larger, soundness
is broken with only negligible probability.

Zero-knowledge is preserved since the interaction with the verifier is completely removed and
replaced by the random oracle that has the behavior of an honest verifier in Step 2. Note that
in the random-oracle model, the simulator is allowed to pogram the RO outputs as long as the
outputs have the same uniform distribution. Simulation thus works by choosing a challenge ¢ at
random, simulate the protocol conversation as above on input z to obtain (¢, ¢, s) and define the
oracle’s output on input ¢ to be ¢. The proof string is the tuple (z,t,s). Note that this strategy
works as long as the position on a random input ¢ is programmable, which only fails with negligible
probability if |H| is large.

The above arguments can be generalized to settings where the instance is not fixed (but for
example derived by some context protocol). The above mentioned mapping between (interactive)
protocol runs (with an honest verifier) and evaluations of the random oracle is retained when the
random oracle is invoked as H(auz ||t), where auz contains sufficient information to identify the
“protocol run” in the above reasoning (which binds the oracle output to a the context such as
the instance, the relation etc.). This is of particular importance when proving the security in a
composable framework.

7.1.2 Instantiation for ECVRF

We recall that in ECVRF we deal with a prime-order subgroup G of order ¢ of an elliptic curve
of order cf - q. Let By and By be two generators of this subgroup. Essentially, the X-protocol of
interest is an equality proof of discrete logarithm, i.e., given two values z; and zo prove knowledge
of x such that z * By = 21 Ax x By = 29.

To instantiate the above generic scheme, we let H := (Z,, +) and define (T, ®) := (G, +) x (G, +)
as the direct product of G, where the binary operation @ on T is defined component-wise. The
homomorphism is given by

BBy 1 Zqg = T; v (% Bi,z% Bo),

17

as obviously, ((x+y)*Bi1, (x+y)*xB2) = (v« B1+y*B1, vxBa+yxBa) = (x* By, x%B2)®(y* B, yxB2),
and the relation Rp, g, € T x Z, is formally defined by

((z1,22),x) € Rp, B, 4> ©* By = 21 Ax % By = 2. (1)

Since G is of prime order ¢, we can satisfy the conditions of Lemma 7.1 by letting u = 0
and ¢ = ¢, and defining the challenge space to be a large subset C C [0,...,q — 1]. We therefore
conclude that the embedded non-interactive zero-knowledge proof of knowledge in ECVRF has (in
the random-oracle model) simulatable executions, and with only negligible probability can a valid
proof for a wrong statement be generated.

As for the above mentioned domain checks, we conclude that the embedded protocol, without
having the verifier check that z € T, we fall into the realm of Corollary 7.2 (where instances (z1, z2)
are checked to merely belong to E x E). Therefore, since the elliptic curve group E satisfies |[E| = cf-¢
(with cf = 8 in the concrete case of curve25519) we can pick ¢ = cf - ¢ and thus obtain the guarantees
from Corollary 7.2 for the choice e = cf, that is for the relation R‘é y CEXE (and B, H generators
of subgroup G), defined by

(21722)ERCB{H:(-)ZE*B:Cf*Zl/\ZE*H:Cf*ZQ. (2)

The canonical epimorphism. Viewed from a different angle, Corollary 7.2 is a general statement
that says that the verification equations of a particular run of the protocol can be interpreted in a
different but related way (that might depend on the order of the particular instance) for which it
constitutes a proof of knowledge. For finite elliptic curve groups as above, we can see that any run
of the protocol can be interpreted in group G: Consider the map P + cf * P which is the canonical
epimorphism ¢.f : E — G and the corresponding map P + ker(¢cf) — ¢cr(P) which identifies the
isomorphism establishing E/ker(¢.f) = G by the fundamental theorem on homomorphisms. From
this we can deduce by Lagrange’s Theorem that |E| = |G| - |ker(¢ef)|. Since the choice of the
representatives is immaterial one can think of each coset P + ker(¢.f) to be represented by a point
P € G (and the kernel consists of the low-order points, i.e., elements of order strictly less than q).

Denoting the first round message of the prover by (U, V'), the projected verification equation
in step 3 of the ¥-Protocol becomes (O,0) = (¢e(s* B —U — c* 21),pef(s * H —V — ¢ * z3))
which is an equation in the prime-order group T. More generally speaking, the above equality is
satisfied when, in a run of the given ¥-protocol, it holds that (s * B —V — ¢* z1) € ker(¢.f) and
(sx H—V —cx*z) € ker(¢cf). By the reasoning in the proof of Lemma 7.1, from any two runs (with
the same first round message) that are accepting under the mapping ¢.f, we can extract a solution
x for which (x % ¢ct(B),x * ¢t (H)) = (¢ef(21), pet(22)). Since B and H are known generators of
group G, the above identification of the associated isomorphism implies ngfl(QSCf(B)) = B and
¢ (¢er(H)) = H and in the other case, we have ¢_'(det(2;)) € P; + ker(¢t) for representatives
P; € G. In summary, this establishes special soundness with respect to the relation

(21722) € RC&,H o xx B = ¢Cf(zl) Nz H = ¢Cf(22) (3)

for the X-protocol above, where we could relax the checks performed by the verifier to (s B —V —
cxz1) € ker(¢er) and (sx H—V —cx 2z2) € ker(¢cr) instead of equality checks (sx B—V —cxz1) = O
and (sx H —V —cx*x2z9) = O.

7.1.3 The UC Construction Statement

Recall from Section 1 how any VRF can be understood as a UC protocol. We now show the security

of the ECVRF protocol without the batching step, but already with the (minor) modifications

18

introduced in Section 6.2. We work in the random-oracle model, that is, the two general functions
H (abstracting the details of Hash) and Ho. (abstracting the details of ECVRF_hash_to_curve) are
represented by two instances of the random oracle functionality, which are .7-%}0, for Y = {0, 1}fvrr,
and fl(g()a respectively, and invocations of H and Hgo. correspond to invocations of the respective
functionalities as explained in Section 1.

Theorem 7.3. Let E and its prime-order subgroup G be defined as in Section 5.1. The protocol
mecvre UC-realizes fé’é‘,’:RF, for £ ={0,1}* and lyre(K) = 4k, in the random-oracle model and under
the assumption that the CDH problem is hard in G.

We note that the theorem translates to the unmodified algorithms by converting proof strings of
the form 7 = (T, ¢, s) for a VRF evaluation (vk,m,y) to proof strings of the form 7’ = (T, U, V, s)
which is straightforward to do as explained before.

Proof. We first describe the simulator and include in its description a variety of consistency checks.
We later argue that the simulation is identical to the real-world execution, until the point where a
consistency check fails. We then bound the associated probabilities of these bad events.

Description of the simulator. We now describe the simulator S for the construction. While
formally the simulator simulates two instances of the random-oracle functionality towards Z, we
keep the notation Hge, and H for simplicity. S maintains two tables Tso. and T}, to store the mapping
corresponding to the ideal function implemented by the RO. We use T, to store all instances of
completed VRF evaluations and their associated proofs (mirroring what the functionality stores)
and Teyy, to store the random base points H assigned to pairs (v,m) together with its exponent
w.r.t. base B of the group G. We further keep a table Thisanioweq tO store information on which
outputs of the RO yield inconsistent simulations. Finally, we have T}, to store the mapping of
honest users to public keys and we store private parameters of honest parties in Tpyiy.®

e On receiving (KeyGen, sid, U;) from .7:\%‘,’:”: Pick three random strings, s,sp,s1 € {0, 1}".
Compute the scalar z from sy as in the real world and define the public key v < z x B.
Evaluate KGENFAIL <— 30 : Tp[i] = (-,v) and abort if true. Otherwise, store the tuple
(sk, Ui, s, 50,51, 2) in Tpyiyv and (U, v) in Tpk and provide the input (VerificationKey, sid, U;, v)
to fé’é‘,’:RF.

e On receiving (EvalProve, sid, U;, m) from f\é/’é‘,’:RF the following steps are preformed:

1. Obtain the entry (U;,v) from Tpy.
2. If for this honest party U; we have (v, m, -,) € T,, then return (EvalProve, sid, U;, m, 7, 1)
to .7:\%‘,’:”. Otherwise, proceed to the next step.

3. Invoke Hgo.(v,m) (i.e., make a simulated RO call) to obtain the instance base point H
and retrieve the tuple (v,m, H, B, t) from Ty, where H :=t * B (which is guaranteed
to exist after the RO call). Define I' := ¢ % v.

4. At this point, the statement and the relation of the NIZK proof are defined: z = (v,T")
and the relation is defined by Rp g as defined in equation (1).

8Looking ahead, this distinction is crucial when arguing security. The simulation is design such that except for
corruption queries, the set Thriv is not used in the simulation. In particular, if party U; is never corrupted, knowledge
of its secret key is not required for a correct simulation.

19

9.
10.

. The proof string 7 is now simulated as explained in Section 7.1.1: For the above relation,

this means we pick random s € Z, and ¢ € C, compute t = (U, V) < (s * B —c* v, s *
H —cxT'), and define 7 :=T||U || V|| 5.

Program the RO: evaluate EVALFAIL; < (Ty[suite_s||0x02||H ||T||U ||V || 0200] #
1). If EVALFAIL; holds, then abort the simulation, otherwise pick 7 < {0,1}** and
assign Tp[suite_s||0z02 || H ||T||U ||V ||0200] <— c||r (where ¢ is represented as a
bitstring).

Evaluate EVALFAILy < 3(v',m/,-,P’') € T, such that 7 € P’ A ((v' # v) V (m # m)).
Abort if EVALFAILs holds (proof is not unique).

If (v,m,-,-) & T, then insert (v,m,?,{r}) into T.. Otherwise retrieve the entry of the
form (v, m,y,P) and update it to (v, m,y, PU {r}).

Store (proof,U;, H, s, ¢) in Tpyiy.

Return (EvalProve, sid, U;, m,) to f\g,’é‘éRF.

e On receiving (Verify, sid, m,y’, m,v', Seva1) from .7:\%‘,’:”, do the following:

1.

Parse 7 as four values (T, U, V, s) € E3 x Z, and verify that the order of v/ is at least . If
these conditions are not satisfied but (v, m,y’,P) € T, with = € P, then VERFAIL; < 1

and the simulation is aborted. Otherwise return (Verified, sid, m,y,7,v’,0) to fé’é\,’:RF.

. Make a call to Hgo.(v',m) to obtain the base point H. Retrieve the associated exponent

t from T¢,,. Invoke H(suite_s||0z02 || H ||T'||U || V' |]0200) to derive challenge c.

Evaluate the truth value of the proof string: £ < (s*B = U+c*xv')A(sxH = V+cxT).
Evaluate VERFAILy « (£ = 0) A (v/,m,y/, P) € T, with 7 € P. Abort the simulation if
VERFAIL2 holds.

If £, = 0 then return (Verified, sid, m,y, 7, v’,0) to f\é/’é\,’:RF.

5. At this point we have a claimed instance (v/,T"), and a valid proof 7 for the claim

(v,T) € Lpet where the relation is defined by equation (2). Define VERFAIL; <+

)

t* (cfxv') # (cf «xT'). Abort if VERFAIL3 holds.

If (v',m,-,-) € T,, then make an internal call to H(suite_s || 0203 || (cf *T') || 0200) to
obtain the hash y and go to the next step. Otherwise, let VERFAIL, < (v',m,-,) &
T, NTp[suite_s || 0203 || (cf ') || 0200] # L, abort if the condition holds and else set
Y 1 and set Thigallowed < IDisallowed U {(Cf * F, y/)}

Evaluate VERFAIL; < (y = ¢/) A 3(0",m",-,P") € T, such that = € P" A ((v" #
v) V (m” # m)). Abort if VERFAIL5 holds (proof is not unique).

If y = ¢/ then retrieve the record (v',m,y’,P) € T, (for some P), update the entry to
(v',m,y', PU{r}) and return (Verified, sid, m,y,m,v’,1). Otherwise the simulator returns
(Verified, sid, m, y, 7,1/, 0) to Fypl¥.

The simulation for the random oracle is done as follows:

e Invocation of Hs. on input s € {0,1}*:

If s = (v,m) € {P €E:ord(P) > q} x {0.1}": If Tyo.[(v,m)] # L, return Tuo.[(v,m)]. Oth-

erwise, pick a random ¢ € Z,, define H :=t * B, and store (v, m, H, B,t) in T,,,. Define
ROCOL <« (Ellajal 7& jaTS?C[i] = ('7'7Hi7'7')7TS2C[j] = ('7'7Hj7'7') : HZ = Hj)a define
ROIDENT <« i : TSQC['L'] = (', - H;, -,) VAN OT’d(HZ) =1.

20

Else: If Tsoc[s] = L, pick H <—g G and set Tsac[s] < H. Return Tsac[s].
e Invocation of H on input s € {0,1}*:

If s = (suite_s||0203|| P || 0200), P € G: Perform the following steps:
1. Ensure consistency with the functionality:

(a) If this is an internal call, the set Seva1 is provided by the functionality as part
of the most recent input.” Otherwise, the set Seya is obtained via querying
(PastEvaIuatlons sid) to fVZVRF

)
(c) Define S := {(vi, mi, Hi, B, t;) € Teap | ti * (cf xv;) = P}.
) Evaluate ROFAIL; < |S| > 1 and abort if ROFAIL; holds.
)
i. If T, [s] = L, assign y to a random value in {0, 1}V,
ii. Otherwise, let y < T}[s].
(f) If S ={(v,m,H,t)} A(v,m,-) € T,:
i. If there is an entry (v,m,%/,P) € T, for v € {0, 1}V’ then set y < 3.
ii. Otherwise, find (v,m,y’) € Seval and update the entry (v,m,?,P) in T, to
(v,m,y’,P). Set y <.
(g) If S={(v,m,H,t)} A(v,m,-) &T.; do the following:
i. If (,v) & Tpk, then send (KeyGen, sid, v) to féé‘,’:RF and add (S, v) to Tpk.

ii. Set ROFAILy < 1 if (U;,v) € Ty for U; that is not corrupted. Abort if
ROFAIL, holds.

iii. At this point, send (Eval, sid, v, m) to fV’R‘,’:RF and obtain the result (Evaluated, sid, 3/'),
y + 3y and add (v,m,y,0) to T..

Evaluate ROFAILs < T'[s] # L AT[s] # y. Abort if ROFAIL3 holds.

If Th[s] # L, return T3, [s]. Otherwise, set T}[s] <y

Evaluate ROFAIL, < (P, y) € Tbisallowed- Abort if ROFAIL, holds.

Return y.

If s = (suite_s||0202|| H ||T||U || V|| 0200), (H,T,U, V) € E*: If T},[s] # L, return T},[s].
Otherwise, pick a random challenge ¢ and an additional random string r <—g {0, 1}%* and

assign Ty[s] < c|| r (where c is represented as a bitstring).

Else: If T},[s] = L, pick y at random from the set {0, 1}* and set T}[s] < y. Return T},[s].

AN

e Upon corruption of party U;: Retrieve the record (sk, U;, s, sg, s1,) and all records of the
form (proof, U;, H, s, c) from Ty and ensure a correct programming of the RO as follows:
1. If Th[s] # L then set CORRFAIL; <— 1 and abort. Otherwise, set Tj[s] < so || s1.

2. If Tp[x] # L for some z = s1 || 2’ then set set CORRFAIL2 <— 1 and abort. Otherwise, for
each record (proof,U;, H, s, c) program the RO as follows:

(a) Compute the nonce as k < s — cz.

9Recall that an internal call is a call from within another part of the simulator, in this case from within a verification
simulation. Note that this distinction is crucial to achieve a responsive simulator, because such a simulator must not
activate any other machine before returning the result to a verification request.

21

(b) Set Ty[s1|| H] <5 {n € [2** — 1]|n mod ¢ = k} (where integers are encoded as
bitstrings).

3. Mark U; as corrupted and return s to the adversary.

This concludes the description of the simulator.

Analysis of the simulation. The failure conditions of the simulator play a crucial role in our
argument. Recall that the simulator performs consistency checks, and if they fail to hold, it aborts.
We first note that the checks performed by the simulator can be phrased as bad events for both
the real and the ideal executions. Recall that the real execution refers to the random experiment
where the environment Z interacts with protocol mgcyre and the dummy adversary, and the ideal
execution refers to the random experiment, where the environment interacts with the ideal protocol
for]:\%‘,’:RF and the ideal-world adversary (aka simulator) S as defined above. We define the events
in Figure 5 that imply a consistent simulation. We now argue by a that Z’s views in the real and
ideal executions are indistinguishable as long as none of the bad events F, of Figure 5 occur (we

denote by F, the complement of F}). We analyze the different inputs that Z can provide:

Key Generations: New keys are sampled identically in the real and ideal world and all public
keys are unique until the point when bad event Fxa occurs. In particular, Fxa implies
KGENFAIL = 0 and the simulation is perfect.

Evaluations: During the proof generation performed by an honest party with public key v on
message m, in both worlds, the base point H is derived by an invocation of Hga.(v, m) which is
distributed identically. As long as bad events F,, and Fj;; do not occur, both worlds proceed
to generating a proof string. If the party has already performed a proof on input m, then
in both worlds, the exact same proof string is returned and otherwise, a new base point H
is derived in the same way. The proof string consists of four values I', U, V, and s which
are simulated as derived in Lemma 7.1 (based on a random exponent k <—g Z,) unless the
random oracle turns out not to be programmable at location (H,T',U, V'), which can only
be if the location has been queried before which is exactly captured by Fg.i1. The output
distribution in the real world on the other hand is generated using function RFg2'“*(H), which
implies an output distribution on a fresh input H that has a statistical distance of at most
272% from the uniform distribution on Z,.1® Both worlds output this proof string unless it is
not unique, which can only happen if bad event Fgy2 occurs. Therefore, the simulation is
indistinguishable from the real world and does not abort.

Verifications: Consider the tuple I = (v, m,y, 7) submitted for verification, where 7 =T'|]| ...
is a proof string which is either valid or invalid with respect to (v, m) (recall that I" and the
fixed based point B together with v, m precisely define the instance and the relation of the
NIZK). We observe that in both worlds the proof is rejected if it does not have the correct
format or the public key v has low order, as long as Fy g1 does not occur. Furthermore as
long as bad event Fy po does not occur, all verification results are consistent, in particular no
invalid proof string 7 has ever be contained in a tuple that has been deemed valid.

We observe that in both worlds as long as Fy g3 does not occur (i.e., the environment provides
a convincing proof of a wrong statement and hence breaks soundness), the tuple I can
only successfully verify, if it encodes a valid statement, i.e., by Corollary 7.2 we get that

T he skew simply comes from the fact that the cardinalities |{n € [2** —1]|n mod ¢ = k}|, for a given k € Z,
where ¢ is a 2k-bit integer, are not identical as they might differ by at most one.

22

in this case m correctly asserts the fact that (v,m,.) is such that there is an x such that
x*B=cfxvANzx H=cf+T', where H is the unique base point associated to (v, m) (unless
F,y or F;q would occur). This in particular implies that as long as Fy ps does not occur, the
function value y for (v,m,.,m) can only be H(...|| P||...) with P = c¢f «xT' = x %« H because
there is exactly one = € Z, such that * B = cf x v € G is fulfilled, where B is the reference
base point of G of order q. We further see that unless Fy pyq occurs, the function value
y=H(...||[cf xT"||...) has been queried after Hg.(v, m) was invoked the first time and in this
case both worlds do define H(... || cf xT'|| ...) to be the output unless any of the bad events
Fror; occur during the evaluation of the random oracle. And if H(...||cf xT'||...) has never
been invoked so far, both worlds let the tuple I be deemed invalid unless Fj,.q4 happens (in
which case, the environment predicted a RO output correctly in the real world). Finally, the
proof string is unique in both worlds unless Fy p5 occurs. In conclusion, as long as none of the
above bad events occur, we see that both worlds (in particular the ideal world) can deem the
tuple valid if the function output y specified in [is the correct value, and there is only one
correct value for the function output for (v, m) for this tuple, which is H(...|[cf «T'||...). In
any other case, the tuple will be rejected.

RO queries to Hyo.: Both worlds sample random elements with identical distributions, and both
worlds return the sampled values as long as F, or F;; do not occur.

RO queries to H: For any input other than = = 0x04 || 0203 || P || 0200, both worlds return
consistent function values, which have been sampled uniformly at random. Also, for any fresh
input z = 0x04 || 0203 || P || 0200, both worlds compute uniformly random values to be result
of the query (where the simulator either samples on its own or obtains a uniformly random
value from f\g/’é\,’:RF), but the simulator might fail to achieve consistency in which case it aborts.
As long as it does not abort, the outputs are thus identically distributed and consistent with

the entire Z. To see consistency, we argue as follows:

First, observe that if a point P (from the set of distinct points queried to the random oracle)
is associated with a key-message pair (v, m), then this is a valid association, in the sense that
valid proof strings # =T'|| ... can only exist that assert (v,I') € L RS o where cf xI" = P and

H is derived from (v,m). The assignment is unique assuming Fropi. Also the converse is
true, i.e., at most one of the distinct points P queried to the random oracle can be associated
with (v,m) as long as none of the bad events occur. Based on F,, and F;; we can assume
that H is a generator uniquely associated to (v,m) and we have b* B = ¢.¢(v) for some

b # 0 (since we exclude low-order public keys by conditioning on Fy r1). Excluding soundness
failure, in view of equation (3) from any two valid proofs 7 = T'|| ... and #/ = T"]| ...
asserting (v,T), (v,I") € Ly we conclude using ¢¢¢(T') = p* B and ¢c(I") = p’ * B (for
some exponents p,p’), that H = p/bx B = p'/bx B. Since the computations p/b and p’/b
are over Zg, the uniqueness follows. Therefore, in order to get a consistent simulation, this
assignment must be computed by the simulator upon the first invocation of the random oracle
that specifies P. In which case, the random oracle is programmed with the output y that a
correctly proven VRF evaluation would result in.

This is possible except when (1) (v, m) has never been queried before and v belongs to an honest
party (as in this case, the simulator cannot obtain the random value y from the functionality),
(2) the point x has been programmed already with a value 3’ that is inconsistent with what
the f\l;’é‘,’:RF outputs (which happens when the simulator could not associate P to a pair (v, m)
upon the first invocation of the form H(...|| P||...).), and (3) if the value y has already been

23

rejected as the function value associated with P during a verification request. In any other
case, the output is made consistent with (v,m) , i.e., any valid proof (assuming Fy p3 does
not occur) will assert the function value y as the output associated to (v, m). The conditions
(1)-(3) are precisely captured by Frora, Frors, and Frors.

Corruptions of honest parties: When a party is corrupted, its secret key material is leaked,
which here is the basic seed s from which all other values are derived. We observe that all
values derived from s are explainable as long as we can program the random oracle on the
respective domains, which is precisely possible unless any of Foprr1 Or Foorre OcCcur.

Bounding the probabilities of bad events. It now remains to bound the probability of a
failure due to a bad event being triggered, where, in view of [BRO6], a failure can formally be
modeled as a “failure flag” which is set when the first bad event specified in Figure 5 is triggered in
the execution. As argued above both worlds are indistinguishable until the point of a failure (note
that by definition, in any execution, at most one of the defined events can occur as the first bad
event triggering the failure). Therefore, we now bound this probability by bounding for each event
F, the probability that I} occurs as a consequence of an input by the environment issued at some
point in the execution where the flag has not been set yet (that is, none of the conditions of any
bad event have been fulfilled yet, which we denote by F,/). Note that by the above analysis, the
probability of this is identical in the real and the ideal experiments.

Event Fxa: If n denotes the upper bound on the number of public keys in the system, the
probability of a collision is upper bounded by n/227¢, where c is the loss induced by function
ComputeScalar(.). The number of public keys can be upper bounded by the sum of key
generation requests made by Z and the number of random-oracle queries made by Z to Hgo..

Event Fg,q: A fresh proof string contains at least the entropy of the nonce, where for example U
is a random point in G. If ny, denotes the upper bound on the RO queries, the probability of
a collision is at most ny,/q per honest VRF evaluation.

Event Fp,o: A proofstring m =T'||U ||V || s for (v,m) is valid if (s*B, sxH) = (U+cxv, V+cxI),
where H is by assumption the unique point associated with (v,m). Since we deal with an
honestly generated proof, the string s is uniformly distributed, and since the RO has not been
programmed before, the challenge ¢ is a random challenge.

Assume that there was any other tuple I = (v/,m’,y/,.) with (v/,m’) # (v, m), for which =
would satisfy the verification equations. We can assume the base associated to (v/,m’) to be
H' # H. To pass the associated verification equation, and assuming for simplicity that ¢’ is
fixed, we would at least need that V = s* H' — ¢ " which equals s *x H — ¢ * I'. Now, let
H =hx*Band H = 1'% B for h # h' by assumption. Therefore, (s-h)* B — (c-h-z)* B =
(s-h)*B—(d-h-2)«xB =1V. Since V is a point in G, we thus see that the relation
s-(W—h)+ (c—¢)-(h-z) =0 must hold over Z,, which, based on the above, is an equation
S-ay+C-ay =0 for two independent random variables S and C' (where the support of C' is a
subset of the support of S) chosen by the honest verifier conditioned on the other bad events
not happening, and fixed ay,as # 0. The probability to obtain, in an honest evaluation, a
valid proof string for a particular other instance is thus at most 1/¢. The number of instances
is upper bounded by the upper bound ng. on the number of calls to Hyo.. In an execution,
the probability of event Fpy2 can thus be upper bounded by m - (ns2./q) where m is an upper
bound on the number of honest VRF evaluations.

24

Sim. Check

Corresp. Bad Event |

Event occurs when...

KGENFAIL

Fxa

Z provides input (KeyGen, sid) to honest party U; and the resulting
(real or simulated) public key v collides with any previously queried
(0/7 ')7 v E G7 to Hsac.

EVALFAIL,

Feonn

Z provides input (EvalProve, sid, m) to honest party U; and the resulting
(real or simulated) EC points (H,T',U, V) collide with a previous tuple
Ay, ..., Ay for which H(suite_s || 0202 || A1 || ... || A4 || 0200) has been
evaluated.

EVALFAIL,

Frue

Z provides input (EvalProve, sid, m) to honest party U; and the resulting
(real or simulated) proof string 7 collides with some proof string 7’ for
which (Verified, sid,v’,m’,y’, 7', 1) has been output previously.

VERFAIL,

Fypi

Z issues (Verify, sid, m,y,m,v") where 7 is a valid proof w.r.t. (v',m)
but has the wrong format or ord(v') < q.

VERFAIL,

Fyra

Z issues (Verify, sid,m,y, m,v") where 7 is an invalid proof string
(w.r.t. (v',m)) for which previously either (Evaluated,sid, m,y,)
has been output to honest party associated with public key v’, or
(Verified, sid,v',m,y, 7, 1) has been output by some honest party.

VERFAIL3

Fyps

Z issues (Verify, sid,m,y,m,v") where # = T'|| ... is a valid proof
(w.r.t. (v,m)) but it holds that (v,I') ¢ Lre for any e|cf.

VERFAIL4

Fypy

Z issues (Verify, sid,m,y,m,v") for a valid proof # = T]|...
(wrt. (v',m))st. (v',T) € Lpet and ord(v') > gand H = Hsa:(v', m),
but there has been a previous call H(suite_s || 0203 || cf +T' || 0z00) that
happened before (v, m) was queried the first time to Hsac(.).

VERFAIL5

Fyps

Z issues (Verify,sid,m,y,m,v") for a valid proof # = T]|...
(wrt. (v',m)) for which also H(...||cf * T'||...) = gy holds,
but which collides with some proof string =« for which
(Verified, sid,v"',m” ,y”,7”,1) has been output previously for ei-
ther v" # v or m" # m. (Here and below we abbreviate the domain
separators for the RO by “...")

Fpred

Z issues (Verify,sid,m,y’,m,v") for a valid proof = = T]|...
(w.rt. (v',m)) and H(...||cf * T'|| ...) has never been called, but
H(...||ct*T]...) =19

ROCOL

F col

Z provides an input (v, m) to Hs2. that returns a base point H that
equals to a previously generated one on input (v’',m’) for either v # v’
orm #m'.

ROIDENT

F;

Z provides an input (v, m) to Hsa. that returns 0, the identity element.

ROFAIL,

Frori1

Z makes a call H(...|| P||...), P € G, such that there exist distinct

values Hy # Hs and possibly distinct values vy, ve, I'y, I's such that

(v1,T'1) € Lger and (v2,T'2) € Lper with cf«I'y = P =cf*I'y and
B,H; B,Hqy

each H; has been obtained previously by a query to Hsac(vi,m;) for

some m;.

ROFAIL,

Frora

Z makes a call H(...|| P||...), P € G, for which there is a public key v €
G associated to an honest party U; and a message m s.t. Hs2e(v,m) = H,
such that (v,cf "'%P) € Lry 4 (i.e., v = xxBAcf*zxH = P) but there
has never been any output (Evaluated, sid, m, -, -) toward U;. (Here, cf™!
refers to the multiplicative inverse of ¢f modulo prime q.)

ROFAIL3

Frors

Z makes a call H(...|| P||...), P € G, such that there is an EC point v’
that satisfies for some IV, ¢f «I' = P, (v/,I") € Lpee , and ord(v') > ¢
B,H

and (v',-) has been queried to Hs2. to obtain H, but there has been
a previous call H(... || P||...) with the same EC point P, but no such
value v’ existed at the time of the previous call.

ROFAIL4

Frora

Z makes a call H(...|| P||...), P € G, for a new input point P which
hashes to a value 4 for which (Verified, sid, v, m,y’, 7, 0) has been output
previously, where m = T'|| ... is a valid proof string and cf *I" = P.

CORRFAIL;

Foorr

Z makes a call H(s) and s equals the secret key (real or simulated) of
an honest party.

CORRFAIL2

Foorra

Z makes a call H(s||z) for some z, and where s equals the (real or
simulated) seed for the nonce generation function.

Figure 5: Definition of events that imply a consistent simulation.

25

Event Fypqi: In the real world, the verification algorithm rejects a verification request if the order
of the public key is not at least g. Furthermore, the proof string is parsed as a 4 tuple and
rejected if not correct. The simulator on the other hand will never evaluate f\g/’é\,’:RF on any

pair (v, m), since those are never added to the set ¢, and consequently never added to 7.

Hence, such requests are rejected in both worlds and the probability of this event is 0.

Event Fypo: In both worlds, (v, m) maps to a unique base point H. In the ideal world, tuples
(v,m,.,m) are ever accepted where 7 fulfills the conditions as stated above for event Fpys.
Second, all proof strings generated on honest evaluations are correct. In summary, if (v, m, ., 7)
does not fulfill the verification equations, then this tuple will never be successfully verified since
verification is deterministic. This holds for both the real and ideal worlds. The probability of
failure conditioned on the other bad events not occurring is therefore 0.

Event Fyps: By definition of the event, we have a pair (v, m), the two bases B and H, and an
accepting proof string 7 =T'||U || V|| s but (v,I") is not in the language of the NIZK. This
is bounded by the soundness of the proof scheme: By Section 7.1.1, we can consider every
verification request as a proof run between a potentially malicious prover and an honest
verifier. Fach such run is uniquely identified by the auxiliary information (v,T', H, B) and
the first message is the pair (U, V). The mapping to the non-interactive version, where the
honest verifier is implemented by a random oracle, is generically achieved by evaluating it
on the tuple (v,T', H, B,U, V) and since by by Corollary 7.2, an invalid instance passes the
run with probability at most 1/|C|, the same holds for the non-interactive version. Assuming
that each pair (v,m) is uniquely mapped to its base point H and since the base point B is
fixed throughout, the random oracle can be evaluated on tuple (H,T', U, V) to preserve the
reasoning from above. By domain separation of this invocation, we observe that obtaining
challenges does not interfere with evaluating the VRF. In summary, the probability of this
bad event (conditioned on the other bad events not occurring) is upper bounded by m/|C|,
where m denotes an upper bound on the number of verification requests.

Event Fyps: For this event to happen before any other bad event happens, we assume a fixed
point cf * T' for which the random oracle has been evaluated but there was no pair (v, m) and
associated point H, such that v is was detected to satisfy (v,T") € L Ref - We are now given a

tuple (v/,m’,.,m) and can assume for this case that since 7 = T'|| ... is a valid proof, it holds
that (v/,T) € Lpe -

To bound the probability of this event, we bound the probability that for a fixed P =cf *I' =
p* B for some p € Z,, a random oracle call Hgoc(v',m’) for a pair that has not been queried
before, yields a valid instance for (v/,T") and relation R‘é 7> where all values are fixed and
H = h * B is sampled at random during the RO evaluation. Furthermore, since no other bad
event has happened, the random oracle call did not produce the identity element or a collision.
Since P is fixed before calling the random oracle, and similarly, cf x v = ¢(v') = x x B
for some z is fixed before evaluating the random oracle, we would need that h satisfies the
equation (x-h)* B = x* H = p* B in group G, i.e., h = p/x computed over Z, where we need
x # 0 or, equivalently, v & ker(¢.), which holds since we condition on Fy z1 that excludes
low-order points. Therefore, the event h = p/x happens with probability at most 1/q. If ny,
denotes the upper bound on random-oracle queries to H and ngo. denotes an upper bound on
the number of random-oracle queries to Hsa., we obtain that event Fy gy (conditioned on the
other bad events not occurring) occurs with probability at most nsac - (n4/q).

26

Event Fyps: Here we bound the probability that a proof string # = (I'||U || V || s) is valid for
(v,m,y) and but we have already previously successfully evaluated tuple (v',m’,y,7) where
H(...||cf % T'|...) = y. Since the proof is valid and none of the other bad events have occurred,
we have (v,T), (v/,T) € LRCBfH. Let cf *T' = p * B for some p.

Since we can assume that Fypy did not occur, we can assume that H(...|[cf « T'||...) was
queried for the first time at some time in the execution at which H' = Hgo.(v', m’) as well as

H = Hgc(v,m) are already evaluated. Therefore, we directly reach a contradiction to Fropi.
Therefore, the probability of this event conditioned on none of the previous events happening,
is 0.

Event F),.4: The chances that a given ¢’ equals H(...|| P||...) for some P that has never been
queried to the random oracle, is 27%%. Let m denote the number of verification queries, where
each query can be seen as identifying the query P, and the corresponding guess y}. m can be
partitioned as the sum m = my + --- + m; where j = [{Py,..., Py}, where my, is the number
of verification requests identifying point P,. The probability of predicting at least one value
correctly is thus upper bounded by Zi:l my - 27 =m . 2745,

Event F,.,: This is a standard collision probability on outputs of the random oracle Hgo. on inputs
(v,m) where v is an EC point of order at least ¢q. Conditioned on the event that none of
the results are the identity element, if ng,. denotes an upper bound on these queries, the
probability of this event can be bounded by n2,./(q — 1).

Event F;;: The probability that any of ns. queries as above result in the sampling of the identity
element of G is bounded by n42./q.

Event Frori: Recall that any two distinct queries Hgo.(vi, m;) and Hgoe(vj, m;) result in random
base points H; resp. H;. In this case, we condition in particular on F,.,; and F;;, which
means that if we have ngo. distinct queries to the random oracle, this induces a sequence
(hi,..., hy,,,) drawn from the set Z, \ {0} without repetition. We now bound the probability

that any two positions in this sequence fulfill the relation to provoke the event.

We know that cf x v; = x; x B, cf ¥ v; = x; ¥ B, for some exponents z; and x;. The critical
relation is whether the sampled points H;, Hj;, written as h; * B and h; * B, respectively,
satisfy, for certain I'; and T'j, the equations (x; - h;) * B = ¢ct(I'y) = P = ¢et(I'j) = (- hj) * B.
This implies that x; - h; = x; - hj over Zg, or equivalently h;/h; = x;/x;, where x;, z; are fixed
before sampling h; and h;.

Given a fixed coefficient a;; € Zg, the probability that the two values h;, h; satisfy h; = a;; - h;
is at most 1/(¢ — 2). By the union bound, the probability of provoking Fropi conditioned on
none of the bad events happening is at most n2,/(q — 2).

Event Fror: Assume we have an environment Z that provokes event Frors and no other bad
event and denote the probability of this event by e. This means that there is an honest party
U with public key v = 2 % B, and a message m s.t. H = Hgoc(v, m), but the party has never
evaluated the VRF on input (v,m). In particular, it has never computed the point I' = x x H.

Assume Z provides a point P in such an execution such that cf x x * H = P holds w.r.t. a key
of an honest party U. Then, we can construct an algorithm A that solves the computational
Diffie-Hellman problem in group G with probability at least € (np, nsae, |P|, c), where ny, is an
upper bound on the number of random-oracle queries to H, ngo. is an upper bound on the
number of random-oracle queries to Hgo., P is the set of registered parties, and c is the loss

27

induced by function ComputeScalar(.), i.e., the constant such that the size of the support of
honestly generated public keys is 22%7¢.

A(Py, Py) works as follows: it maintains a |P| X nga. matrix M, where the ith row stores all
returned queries Hgo.(v;, -) for the public key associated with party U;. Furthermore, it stores
for all points P € G provided in an invocation H(...|| P||...), the point P’ € G s.t. cf x P’ = P
in an array N of size 1 x nj. A now first picks a random location (i, 7) in M, defines v; = Py,
and M(i,j) = Pa. It then emulates the ideal world execution towards Z, injecting P; as
public key and P, as random base point P> = Hgo.(P1, m;), where the tuple (P, m;, P, B,7)
is added to Tty since the exponent is not known. Any consistency check done by the simulator
that would involve the exponent of P, w.r.t. base point B, is set to be satisfied. A stops
the execution when either one of the following stopping conditions occur: (1) Z corrupts Uy;
(2) Z requests U; to evaluate the VRF on m; (3) Z terminates. In any case, the output is
determined by picking a random position & in array N and returning N[k].

We observe that conditioned on none of the other bad events occurring during the emulation,
the emulation provides, until the point when it stops, an identical view to Z as the ideal
execution as long as no EC point P is provided as input to the random oracle for which
(Py, Py,cf ™! % P) is a Diffie-Hellman triple: Conditioned on none of the other bad events
happening, the computation of the set S defined in step 1(c) of the simulation of the random-
oracle query H(... || P || ...) is correct except until the point when the emulation fails to detect
the relation ty * cf * v = P, where ty is the exponent of Hg.(v, m’) to the base B. Clearly,
the emulation only fails to detect the relation w.r.t. P if for some x we have z - cf - P, = P
and P, = z * B. That is the associated point P/ = (z-y)* B for P, =z + Band P, =y B
that we are looking for.

Since by definition of the event, there must be at least one entry (7, j) in matrix M such that
(vi,m) was not evaluated and party U; is not corrupted, we obtain that the success probability
of A is at least € = ¢/(ny, - nsae - [P| - 2°), where € is the probability of event Frops happening
conditioned on none of the other bad events occurring, and where the (small and constant)
factor 27¢ is due to the probability that a random point P is a valid public key in the correct
domain of Gen(1*).

Event Frors: The condition of this event is that a given RO evaluation H(... || P|]...) a subsequent
call to Hsa.(v',m’) for some v’ results in a base point H' from which a valid proof instance
(v/,T") with cf * I" = P can be deduced. By definition of the event, P is fixed before any
such instance (v/,T") is known. Therefore, there must have been a fresh call Hgo.(v', m’) for
some m/, which resulted in random base point H’. Since v’ is fixed before, the exponent z,
such that cf x v/ = x x B, is fixed before the point H’ is sampled. In order to deduce a valid
instance I", the relation z * H' = P must hold. Since H and P are elements of G, we write
H' =1 % B and P = p* B and see that the relation (z - ') * B = p x B implies that the
relation h’ = p/z must hold over Z,. Given an upper bound nj, on the RO queries to H and
an upper bound n4. on the number of RO queries to Hyo., there can be at most ngo. queries
to Hgoe that could result in any of the relations to hold with any of the at most P points
queried before. An upper bound on the probability of the event Frpops conditioned on no
other bad event happening can be obtained by a union bound which yields ny, - ns2./(q — 1).

Event Frors: Conditioned on Fj,..q, the probability of Frors is 0. The reason is that if
(Verified, sid, v, m,y’,m,0) (where # = T'||...) has been output to a party, then the input
(Verify, sid, m, ', 7,v) must have been given as input which correctly predicted H(... || cfxT'[| ...)
before it was called.

28

—[Functionality Ggg }

The function maintains a (dynamically updatable) list L (initially empty). The functionality manages
the set P of registered machines (identified by extended identities), i.e., a machine is added to P when
receiving input REGISTER (and removes a machine from P when receiving DE-REGISTER. The requests
give activation back to the calling machine).

e Upon receiving (ADD, sid,x) from P € P or from the adversary, set L <« L||z output
(Updated, sid, L) to the adversary.

e Upon receiving (RETRIEVE, sid, i, j) from P € P or from the adversary, do the following: if L[j] is un-
defined, return (7, j, §) to the caller. Otherwise, return the result (Retrieved, sid, 4, j, L[i] || ... || L[7])
to the caller.

Figure 6: The global bulletin board.

Event Fr,.1: This event only occurs if the environment correctly guesses the secret seed of a
party. There are at most |P| honest parties, and if nj is an upper bound on the number of
RO evaluations to H, the probability of this event is no more than ny, - |P| - 272%.

Event F,.2: This event only occurs if the environment correctly guesses the bitstring s; of an
honest party. Conditioned on Fgpr1, the probability of this event is no more than ny, - |P|-272%.

It is easy to see that all these failure probabilities are negligible in the security parameter. The
theorem follows. O

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used
in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be
answered immediately.!! This is a useful modeling property and we refer to [CEK*16, BGK ' 18]
for the relevant details, as they are outside the scope of this paper.

7.2 Security Analysis of ECVRF with Batch Verifications

We first describe the setting and the ideal world that idealizes the security requirements for batch
verifications.

7.2.1 The Setting

We model the setting where there is a global database as a reference of stored VRF evaluations
and proofs. We call this global bulletin-board functionality Gpp and describe it in Figure 6. Each
instance of the functionality maintains a list of tuples (v, m,y, 7). The list is append-only, but there
is no other restriction on what to append and thus the only guarantee it offers is that if we refer to
an interval [i..] in the list associated to session sid, then, once defined, the result is always the same.
The functionality is a global setup [BCH'20], i.e., treated as a global subroutine. It is the reference
for claimed VRF proofs connected to a particular session visible and updatable by anyone.

"That is, without activating any other machine for any other purpose than providing the answer back to Fvg.

29

: : £,byRF]
—[Ideal Functionality FURFt]

JFVrr interacts with its set of registered parties P denoted by Uy, ..., Ujp| and the adversary/simulator S.
It maintains tables T'[-,] that are initially empty (denoted by symbol L). The tables are initialized
on-the-fly. The functionality maintains a set Spy to keep track of registered keys, and Seva1 to keep track
of all known VRF evaluations. The functionality registers to the instance of Ggg with the same session
identifier sid.

e Key Generation. As in in Figure 1.

e Malicious Key Generation. As in Figure 1.
e VRF Evaluation and Proof. As in Figure 1.
e Malicious VRF Evaluation. As in Figure 1.

e Verification. As in Figure 1.

e Batch Verification. Upon receiving a message (BatchVerify, sid,i,j) from any party, send
(RETRIEVE, sid, 1, j) to Ggg to receive the list (7, 7, L;:;). Then output (BatchVerify, sid, i, j) to the
adversary. Upon receiving (BatchVerified, sid, i, j,b) do the following:

1. If L;; = 0 then return (BatchVerified, sid, %, j,0) to the caller.
2. Parse each entry of L;,; as tuple (mg, yx, i, vg) for k=1...|L;;|.

3. Evaluate the condition f < Vk € [|L;] : (-,vr) € Spi AT (vg, mi) = (yx, S) A € S If
f =1, return (BatchVerified, sid, i, j, 1) to the caller.

4. Evaluate the condition f’ < Vk € [|L;;;|] : (-, v) € Spp AT (v, mi) = (y&,). If f' =1 return
(BatchVerified, sid, i, j, b).

5. Return (BatchVerified, sid, i, j,0).

e Adversarial Leakage. As in Figure 1.

Figure 7: The VRF functionality with Batch Verifications.

7.2.2 The Ideal World

In the ideal world, we introduce a new simple command to the VRF functionality described
in Figure 7. Upon input (BatchVerify, sid, i, 7), the functionality retrieves the corresponding list
from Gpp and if the list is non-empty, it verifies whether all claimed combinations are known
are stored as valid combinations. In this case the functionality returns 1. If this is not the case,
but all pairs (v;, m;,y;) specify the correct input-output-pairs as stored by the functionality, i.e.,
T (vi,m;) = yi, then the functionality lets the adversary decide on the output value. This case
captures the fact that although the proofs strings might not be stored in the functionality (or will
never be), batch verification will never assert a wrong input-output mapping. In any other case, the
output is defined to be 0.

7.2.3 The UC Protocol

Recall from Section 1 that any VRF can be formulated as a UC protocol. We now show how
to formulate batch verification as an extended protocol WECVRF that is identical to mgcyrp and
additionally implements the following procedure outlined in Section 6.3. To simplify notation, we
keep writing H and Hgs. for general hash-function invocations and understand that this corresponds
to evaluating the random oracles .7:1%}0 and fgo, respectively.

30

e On input (BatchVerify, sid,i,7), send (RETRIEVE, sid,i,j) to Gpp and receive the answer
(Retrieved, sid, 4, j, L;.j). If L;.; = () then return (BatchVerified, sid, 7, j,0). Otherwise, do the
following

1. Parse every item in the list as tuple, i.e., for each k € [|L;.;|] obtain T}, = (my, yk, Tk, Vk)-
A tuple has the wrong format, return (BatchVerified, sid, i, j,0).

2. For each T} perform the first steps 1. to 3. and step 3.5 of ECVRF.Vfy, that is:
— Verify that v, € E and then that cf x vk # O.
— Parse and verify 7, as tuple (I'y, Ug, Vi, s1) € E3 x Zyq.
— Compute Hj, < Hgoc(vg, my).
— Compute ¢ < H(suite_s || 0202 || Hy || Tk || Ug || Vi || 0200)]..5].
3. If any check fails then return (BatchVerified, sid, i, 7, 0).
4. Perform the batch verification:
— Set), < Hy || m for all k € [|L;.;]].
— Let Sy« 7] ... ||7T|/Li:j|.
— Vk € [|Li;j|] : I < H(suite_s||0x4c|| k|| St || 0x00)]..k].
— Vk € [|Li|] : v < H(suite_s || 0252 || k|| S7 || 0200)]..].

— Evaluate

by« (O: Z (’r’k*(sk*B—Ck*’Uk—Uk)—I—lk*(sk*Hk—Ck*Fk—Vk))) .
ke[|Li;]
(4)

5. Evaluate by <— (Vk € [|L;:j|] : y» = Compute(7y,)).
6. Define b < by A by and return (BatchVerified, sid, i, j, b) to the caller.

7.2.4 The UC Construction Statement

Theorem 7.4. Under the same assumptions as Theorem 7.3, the protocol WELCVRF UC-realizes

fé’é\lﬁ (where Gpp is a global subroutine), for £ = {0,1}* and byre(k) = 4k.

Proof. Consider the simulator in the proof of Theorem 7.3 and denote it Sgcyrr. We build our new
simulator ST on top of Secvrr as follows: we simulate identically to Secvrr and ensure that at any
point in time all combinations stored in Gpp are verified with the functionality to prepare for batch
verifications. We thus get the following simulator S*:

e On receiving (KeyGen, sid, U;) from FEORE invoke Secvrr on the same input and return to

VRF+

fé’é‘l’:'f whatever Sgcyrp outputs (and abort if Sgcyrp aborts).

e On receiving (EvalProve, sid, U;, m) from fé’é‘;’f,

to fé’é‘gf whatever Sgcyrr outputs (and abort if Sgpcyre aborts).

invoke Sgcvrr on the same input and return

e On receiving (Verify, sid, m,y’, m,v’, Seyal) from fé’é‘l’ﬁf invoke Sgcyrr on the same input and

return to FOVRF whatever Secvrr outputs (and abort if Sgcyrp aborts).

VRF+

31

e On receiving (BatchVerify, sid, 7, j) from fé’é\l’:'f, retrieve the list L;;; from Gpp and perform

the batch verification steps like the protocol (i.e., emulate the steps from Item 1 to Item 6
of the batch verification) to derive the return value b and return (BatchVerified, sid, i, j, b)

to fé’é‘l’:'f. Define SIMFAIL™T if b = 1 but there exists a tuple (m/,y/, 7/ =T"|| ...,v’)) but

Compute(n’) # 3. Abort if SIMFAILT occurs.

e On receiving (Updated, sid, L) from Ggg, ST determines all new added tuples T; of the correct
R £, lvRF
form (mi, yi, mi, vx) and calls F o

the simulation Sgcyre on input (Verify, sid, m;, yi, 7i, Vi, Seval) as above). Finally, ST outputs
(Updated, sid, L) to the environment.

with input (Verify, sid, m;,y,m,v’), (which in turn triggers

e Invocation of Hg. on input s € {0,1}*: Perform the same actions as Sgcyrr (abort if
SECVRF aborts).

e Invocation of H on input s € {0,1}*: First, perform a case distinction on the separated
domains s = (suite_s || 0z4c||S||0200) resp. s = (suite_s||0x52]|S||02z00) which are
simulated as follows: If Tj[s] # L, return Tj[s]. Otherwise, pick a random challenge ¢ and an
additional random string r <—g {0, 1}** and assign Tj[s] + c||r (where c is represented as a
bitstring). For any other domain, perform the respective actions of Sgcvre (abort if Sgcvrre
aborts).

e Upon corruption of party U;: Perform the same actions as Sgcvre (abort if Sgcyrr aborts).

Analysis of the simulation. We first consider the same set of bad events defined in Figure 5,
but we formally extend the events Fy g; to not only includes queries (Verify, sid, m,y, 7, v'), made
by Z, but also that a tuple of the form T'= (m, y, 7, v) is added as part of a query (ADD, sid,T")
to Gpg.

We first observe that any environment Z which does not make any invocation of the form
(BatchVerify, sid, i, j) to any honest party and which has non-negligible advantage in distinguishing
the real and ideal executions, contradicts Theorem 7.3. Since the only difference between the two
executions is the availability of the bulletin board Gpp, we can design an environment Z’ which
internally runs Z and emulates Gpp towards it, and whenever new updates are pushed on Gpg, 2’
lets the challenge protocol verify these updates. For all other queries, it invokes the main parties of
its challenge session. If at any point, the execution is aborted (in which case Z’ must be connected to
an ideal execution), the distinguisher outputs 0, and in any other case outputs whatever Z outputs.
Since no other entity ever writes or reads from Ggg except Z in the real world, if Z’ interacts with
mecvrr then the view emulated towards Z is exactly the view it has when interacting with WECVRF'
And if Z’ interacts with f\é/’é‘,’:RF (and simulator Sgcygrg) then the view emulated towards Z is exactly

the view it has when interacting with fé’é‘l’ﬁf (and simulator ST) until the point where a failure
event is provoked as defined in Figure 5. Therefore, the distinguishing advantage of Z’ is at least
the advantage of Z.

It thus suffices to analyze the real and ideal executions’ behavior on inputs (BatchVerify, sid, i, j).
By definition of 8T, whenever a tuple Ty, = (mg, yx, Tk, vx) is added to Ggg, this is equivalent to have
&ZVRF)‘

fé’é‘l’ﬁ verify the tuple (m,y,m,v") (and the verification is identical to the verification of Fgf
byRF

Therefore, in the ideal execution with fé’Rﬁ and ST, the output of any query (BatchVerify, sid, i, j)
is 1 if all tuples T3, ..., T; have been successfully verified.

For the remaining cases, we see that the simulator can decide on the value, with the restriction
that the output can only be decided to be 1, if all input-output pairs ((v;, m;), y;) are consistent

32

with function table of the fé’é\l’:'f.

That is consider the case that we have b = 1 upon batch verification and none of the bad events
defined in Figure 5 occur. The simulator has made, for each tuple Ty, = (mg, yr, 7 = T'x || -, vg) a call
Hsoc(vg, my) (to obtain Hy) and a call H(... || cf « T || ...) = (to obtain yg). The latter call associates
the point cf * 'y, with at most one pair (v, m’) that satisfies the relation ¢’ * (cf xv") = cf x '}, (where
t' is such that ¢’ * B = H'), i.e., for which (v/,T) € R%f’thz' If such a match is found (and no bad
event occurs), the simulation has consistently programmed the random oracle H(... || cf * T'x || ...) to
match the output of the functionality on a query for (v, m’).

Therefore, the computed batch verification value b = 1 by the simulator must be accepted by
the functionality if for each Ty specified in tuple T} the pair (v/,m’) that is associated to each Ty
specified in tuple T}, is exactly the pair (vg, my) listed in tuple 7). Stated differently, and in view
of equation (3), assuming that no tuple breaks the NIZK soundness individually (condition on V F3
and since the simulator verifies every proof string added to Gpp), the simulator could only fail to
simulate if the entire batch verifies, but for a tuple T}, with ¢et(viy) = x * B for some xp # 03,
we have that ¢c(T'y) # xp * Hy, where Hy (conditioned on F,, and Fj4) is the unique generator
associated to (vg, my). This motivates the following new bad event Fpaiq, that rules out this case

and which implies that the simulator never aborts. Based on the above considerations as long as
none of the bad events (including Fga¢en) occur, Z’s views in the real and ideal executions must be
indistinguishable.

New event Fpuien. This is the event that Z provides input (BatchVerify, sid, i, j), which refers
to tuples Tj, ..., T}, upon which the computed result is (BatchVerified, sid, i, j, 1), but at least one
of the tuples, say T, i < k < j, encodes correctly formatted values (mg, yi, g, vk), 7 = Tk || - - -,
such that y, = Compute(ry), but (vg, I'x) & RCBfka for Hj, = Hgoc(vg, my).

Bounding the probability of the new bad event. We now bound the probability of event Fgaich
to happen conditioned on none of the other bad events occurring. Due to the condition in partic-
ular on Fypy, event Fpaten can only be triggered on input (BatchVerify, sid, i, j), where all tuples
L;; = T;,...,T; in Gpp are defined and well-formed. Furthermore, we can assume that for each
Tk = (mk, yk,wk,vk), T = Fk || Uk || Vk || Sk, it holds that Compute(wk) = H(|| cf * Fk ||) = Yk,
as otherwise, the batch verification output is fixed to 0. Likewise, all relations under Item 2 of the
batch verification step must hold. Furthermore, since all proof strings to Ggg are assumed to be
implicitly verified, by V F4, no tuple added to Gpp constitutes a soundness breach of the NIZK.

Thus, we investigate the probability that equation (4) is satisfied despite of the existence of
a tuple Ty = (mj,yi, 7, v;) with 7y = (I'y, Uz, Vi, si), where (vi, 'y R ., for which by
assumption the(C(fua‘éfion]; k) * (e k) (* k) ? i

Up = sp * B — ¢ * v,
Vi =spx Hy —cp =1,

are not simultancously satisfied, where Hj, is the unique base associated to (v, m;) and ¢j, is the

12 And note that at most one point P € G can be associated to (v',m') as argued in the proof of Theorem 7.3 based
on no bad events being triggered so far.
3 This follows by Fy 1.

33

challenge associated to this proof string for this proof instance. We therefore have

T’@*(S@*B—C@*’U@—U%)—I—l%*(S%*H];—C];*F%—V%)

= Z —(rg * (s * B — ¢ kv — Ug)+l * (s Hy — ¢ x T, — Vi)
ke[| L \{k}

as an equation over the elliptic curve group E. Towards the argument, define

Q= Z —(rg*(sp*xB—cp*xvp —Ug) +lpx (sp* Hy — cp % T — Vi)
ke[| Li:j]\{k}
gr) = s, x B; Qgr) = Cf * VR :(,f) = Up;
l l l
g)::s]}*H,}; g)::c,}*I‘,}; g)::fo

which allows us to rewrite the equation as
l l l T T T
G (QF - QY — Q)+ (@ - @) - Q) = Q. (5)

Similar to the Fiat-Shamir transform, we can consider the verification as the non-interactive
version of an interactive proof, where the prover presents a list L;,; of tuples and the verifier
samples the coefficients r, and [at random from a large space C, and the probability of a
soundness failure is bounded by the probability that equation (5) happens to be satisfied as
described above. In the random-oracle model, the honest verifier can be replaced by the random
oracle as described in Section 7.1.1, if there is a one-to-one mapping between protocol runs and
invocations to the random oracle. We observe that given our assumptions of none other bad event
happening, for each list of tuples presented by a potentially malicious prover, the sampling [} <+
H(suite_s || 0z4c || k|| ST || 0200)[..x] and 7 < H(suite_s || 0252 || k|| St || 0200)][..x] is performed
using different inputs to the random oracle, which establishes the mapping. In particular, St is
the ordered list specifying for each k, Hy || T'x || Uk || Vi || sk which, assuming no collision among the
random base points Hj, assigned to (vg, my), is the representation for the tuple (myg, y, 7k, vx) and
yr = Compute(m;,) must hold. Therefore, different lists obtained from Gpp result in different values
for S7, and by domain separation, independent random coefficients are chosen.

Returning to equation (5) it is easy to see that if either le) —ng) —Q:(,,l) € Gor Qgr) — g” — :(,,T) €
G, and recall that by assumption at least one sum does not equal the identity, the equation is
fulfilled with probability at most 1/|C| over the random choice of the coefficients.

For the general case, where ng) — gz) — Qéz) # O for at least one z € {l,r}, denote Q1 := gz)

and P := —(ng) + Q:(,)Z)) We thus have Q1 + P # O, where Q1 € Gand P € Eand P ¢ G
by assumption. We observe that any [for which I; * (Q1 + P) = @, we obtain a solution for
l; * ¢t (Q1 + P) = ¢ct(Q), where the right-hand sides are independent of the random coefficient
and the points @1 + P and @ are defined before sampling the random coeflicient. Thus, as long
as Q1 + P ¢ ker(¢¢r), the probability to satisfy the condition is at most 1/|C|. Therefore, the

probability of passing the check is at most 1/|C| provided that at least one of Qgr) — g) — :(,f)

and le) — gl) — Qg) is not in the kernel of ¢s.

The remaining case is simple based on our considerations in Section 7.1.2: a tuple Tj, fixes the
entire instance of a particular proof, i.e., B, Hj, v;, 'z, and encodes a particular run of the associated
Y-protocol where the challenge is computed correctly based on the random oracle using the Fiat-
Shamir transform (otherwise, the entire sequence of tuples is rejected). In view of equation (3), we
see that the employed X-protocol is sound w.r.t. relation R‘é m,, even for the relaxed verification

34

g” — g) — :(,,T) € ker(oper) A le) — gl) — :(),l) € ker(¢cf). Thus, the probability that the instance
and proof run encoded in Tj, satisfies this check but (v;,I';) & R‘é g, is at most 1/|C|. The theorem
follows by taking the union bound over all batch verifications instructed by the environment. [

8 Putting Everything Together

We analyzed the range-extension construction in Section 3 without batch verification in a modular
way based on any VRF that UC-realizes f\g/’é‘,’:RF. Nevertheless, it is easy to see that batch verification
and range extension can be done in a single step in the protocol above. All we have to do is
to modify the algorithm Compute in WECVRF (and in particular, this changes the format of the
tuples T' = (m, y, T, v) only in one place, i.c., y € {0,1}~rF where ¢ is the fixed constant in the
range-extension construction. We denote the new protocol by ﬁECVRF:

e Compute/(r): The output computation goes as follows for a (proof) string = = T[]

Precondition: I' € E.
1. Compute Y < H(suite_s||0x03|| (cf *I") || 0200).
2. Output (H(suite_s||0204||1||Y ||0200),...,H(suite_s||0x04 || c|| Y || 0200)).

where we follow the format for domain separation for ECVRF. We obtain the following corollary.

L,c-lyRrF

Corollary 8.1. Under the same assumptions as Theorem 7.4, protocol ﬁECVRF UC-realizes VREL

for £ ={0,1}* and byre(k) = 4k.

Proof Sketch. The only difference in the simulation compared to the proof of Theorem 7.4 is that the
output of the VRF functionality y = (y1,...,y.) w.r.t. (v,m) must additionally be made consistent
with the value of the random oracle in the domain-separated positions (suite_s || 0204|| || Y || 0200)
fori=1,...,c¢, where Y is obtained by evaluating H(suite_s || 0203 || P || 0200) and P is derived
from a valid proof string 7 =T'|| ... as P =cf xI.

We recall from the proofs of Theorem 7.3 and Theorem 7.4 that as long as the bad events defined
in Figure 5 do not occur, that if a point P (from the set of points queried ot the random oracle
as above) is associated with a key-message pair (v,m) , then this is a valid association'* and that
the assignment is unique. Also the converse is proven, i.e., at most one of the points P queried to
the random oracle can be associated with (v, m) as long as none of the bad events occur. Since
the simulation is consistent, the assignment of points P to pairs (v, m) can be done upon the first
invocation of the form H(... || P||...).

Finally, correctly predicting the random-oracle output Y derived from point P (that is associated
to (v,m)) is a negligible probability event. Therefore, all the pairs (i,Y), i =1,..., ¢, queried to
the RO are to be programmed just at the moment when Y <—g {0, 1}*V/ is defined for the first time
in the simulation and associated to the pair (v, m) via point P. Similar to the proof of Theorem 3.1,
a consistent simulation is only possible if none of these positions (i,Y") for ¢ = 1,...,c has been
programmed before, which is an event that can be bounded by the (negligible) collision probability
of bitstrings drawn uniformly at random from {0, 1}*v&F. Therefore, if neither such collisions nor any
of the above defined bad events occur we obtain a simulator for which the real and ideal executions
are indistinguishable. The claim follows. O

11 the sense that valid proof strings can exist that prove the statement (v,T") € Lger , where cf*I' = P and H is
B,H

derived from (v, m).

35

References

[BCH*20]

[BDL*12]

[BGK 18]

[BROG6]

[Can20]

[CEK*16]

[DGKR18]

[GRPV]

[Maulb]

[NMVRO5]

Christian Badertscher, Ran Canetti, Julia Hesse, Bjorn Tackmann, and Vassilis Zikas.
Universal composition with global subroutines: Capturing global setup within plain uc.
In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography, pages 1-30,
Cham, 2020. Springer International Publishing.

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-
speed high-security signatures. Journal of Cryptographic Engineering, 2(2):77-89,
September 2012.

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018: 25th Conference on Computer and Communications Security, pages 913-930,
Toronto, ON, Canada, October 15-19, 2018. ACM Press.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology —
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409-426,
St. Petersburg, Russia, May 28 — June 1, 2006. Springer, Heidelberg, Germany.

Ran Canetti. Universally composable security. Journal of the ACM, Vol. 67, No. 5,
2020.

Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Kiisters, and Daniel Rausch.
Universal composition with responsive environments. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology — ASIACRYPT 2016, Part II, volume 10032
of Lecture Notes in Computer Science, pages 807-840, Hanoi, Vietnam, December 4-8,
2016. Springer, Heidelberg, Germany.

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology — EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 66-98, Tel Aviv,
Israel, April 29 — May 3, 2018. Springer, Heidelberg, Germany.

Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Vcelak. Verifiable
random functions. Internet-Draft, IRTF. https://datatracker.ietf.org/doc/html/
draft-irtf-cfrg-vrf-10.

Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. Des.
Codes Cryptography, 77(2-3):663-676, December 2015.

David Naccache, David M’Ralhi, Serge Vaudenay, and Dan Raphaeli. Can d.s.a. be
improved? — complexity trade-offs with the digital signature standard —. In Alfredo
De Santis, editor, Advances in Cryptology — EUROCRYPT’94, pages 77-85, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

Leonid Reyzin. Vrf standardisation mailing archive. https://mailarchive.ietf.org/
arch/msg/cfrg/KJwe92nLEkmJGpBe-0ST_ilr_MQ.

36

