Compact Storage of Superblocks
for NIPoPoW Applications

Kostis Karantias', Aggelos Kiayias®?,
Nikos Leonardos?, and Dionysis Zindros4

! University of Toannina 2 University of Edinburgh
3 University of Athens 4 JOHK

Abstract. Blocks in proof-of-work (PoW) blockchains satisfy the PoW
equation H(B) < T. If additionally a block satisfies H(B) < T27*,
it is called a p-superblock. Superblocks play an important role in the
construction of compact blockchain proofs which allows the compression
of PoW blockchains into so-called Non-Interactive Proofs of Proof-of-
Work (NIPoPoWs). These certificates are essential for the construction
of superlight clients, which are blockchain wallets that can synchronize
exponentially faster than traditional SPV clients.

In this work, we measure the distribution of superblocks in the Bitcoin
blockchain. We find that the superblock distribution within the block-
chain follows expectation, hence we empirically verify that the distribu-
tion of superblocks within the Bitcoin blockchain has not been adversar-
ially biased. NIPoPoWs require that each block in a blockchain points to
a sample of previous blocks in the blockchain. These pointers form a data
structure called the interlink. We give efficient ways to store the interlink
data structure. Repeated superblock references within an interlink can
be omitted with no harm to security. Hence, it is more efficient to store a
set of superblocks rather than a list. We show that, in honest executions,
this simple observation reduces the number of superblock references by
approximately a half in expectation. We then verify our theoretical result
by measuring the improvement over existing blockchains in terms of the
interlink sizes (which we improve by 79%) and the sizes of succinct NIPo-
PoWs (which we improve by 25%). As such, we show that deduplication
allows superlight clients to synchronize 25% faster.

1 Introduction

Bitcoin [20] and other blockchains which use the same backbone consen-
sus mechanism [12] use Simple Payment Verification (SPV) to shorten
the synchronization time for lightweight clients, where the clients need
to download block headers instead of whole blocks. Recently, a line of
work has introduced superlight clients, which do not require all block-
chain headers to be downloaded, but, rather, only a sample of them. This
sample consists of blocks which happen to achieve a higher difficulty than
the required one, and are thus termed superblocks.

By sampling the superblocks of a chain, short proofs about a block-
chain can be created, which allow a client to synchronize with the longest
blockchain without downloading all blocks. These so-called proofs of proof-
of-work contain only a small number of cleverly chosen superblocks which
compact the proof-of-work of the blockchain into a succinct string, while
maintaining the same security level as SPV clients. However, while the
protocol has even been deployed in practice, the distribution of superblocks
within a blockchain has not been previously measured. In this paper, we
provide measurements of this distribution for the Bitcoin blockchain.

In order for superblock sampling to work, it is necessary that each
block contains, in addition to the standard pointer to its previous block,
a few select pointers to some preceding superblocks. These pointers are
organized in a special data structure, the interlink. For relevant applica-
tions such as superlite clients and cross-chain transfers, it is critical that
the interlink structure is compact. We measure the size of the interlink
structure and provide a simple novel optimization which can bring down
its size to less than a half. We then study the impact of this improvement
on the size of proofs of proof-of-work.

Related work. Superblocks were first observed to exist in [19]. The in-
terlink data structure was put forth in [15], where it was also observed
that it can be organized into a Merkle tree. Interlinks containing all the
blocks of the blockchain have been proposed in [4]. Superblock interlinks
have been included from genesis in cryptocurrencies such as ERGO [§]
and nimiq [9]. Complete blockchain interlinks have been proposed for
Ethereum [6]. Nimiq and ERGO have independently applied interlink
deduplication in practice to save space [5,8]. In [16], the consumption of
the interlink data to construct Non-Interactive Proofs of Proof-of-Work
was presented and concrete numbers were given about the sizes of such
proofs. They also presented a way to construct such a structure without
a soft or hard fork, but a backwards compatible velvet fork, which was
later explored in [24]. Bitcoin Cash has been velvet forked in this man-
ner [13]. Beyond superlight clients, another application of NIPoPoWs are
cross-chain transfers [17] between proof-of-work blockchains. Comparable
constructions have also appeared for proof-of-stake blockchains [14].
Our contributions. The contributions of this paper are summarized as
follows:

1. We measure superblock distributions in Bitcoin. We observe that the
distribution of superblocks follows expectation, indicating there are no
ongoing or historical attempts to bias the distribution of superblocks

(so-called badness attacks [16]). We are the first to collect any empir-
ical measurements of superblocks on real blockchains.

2. We describe the simple but important optimization in regards to the
way blocks are compactly stored in an interlink tree by observing that
duplicate pointers can be removed without harming security. As such,
we construct interlink block sets instead of interlink block lists.!

3. We prove that our optimization reduces the number of pointers in
each interlink by a half in expectation.

4. We evaluate our improvement on the Bitcoin blockchain and collect
empirical data regarding the performance of our improvement, includ-
ing concrete sizes of NIPoPoWs built. We experimentally demonstrate
that our optimization reduces interlink vector sizes by 79% on aver-
age and the already very succinct NIPoPoW certificates by 25% on
average.

2 Superblocks and proofs-of-proofs

Blocks generated in proof-of-work [11] systems must satisfy the proof-
of-work equation H(B) < T where T denotes the mining target [3]
and B denotes the block contents, which is a triplet including a rep-
resentation of the application data and metadata, a nonce, and a refer-
ence to the previous block by its hash. The function H is a hash func-
tion, modelled as a random oracle [2], which outputs x bits, where & is
the security parameter of the protocol and T' < 2¢. It sometimes hap-
pens that some blocks satisfy a stronger version of the equation [15],
namely that H(B) < T27# for some p € N. Such blocks are called p-
superblocks [16]. It follows directly from the Random Oracle model that
Pr[B is a p-superblock|B is a valid block] = 27#. Note that if a block is
a p-superblock for some p > 0, then it is also a (u — 1)-superblock. We
denote the maximum p of a block B its level(B) = |1g(T) — lg(H(B))].

The count of superblocks in a chain decreases exponentially as p in-
creases. If a blockchain C generated in an honest execution has |C| blocks,
it only has 27#|C| superblocks of level u in expectation. Hence, the to-
tal number of levels is lg(|C|) in expectation. It has been theoretically
posed that the distribution of superblocks can be adversarially biased in
so-called “badness” attacks [16] in which an adversary reduces the den-
sity of superblocks of a particular level within a blockchain. However,
the actual distribution of superblocks in currently deployed blockchains

! The deduplication optimization has already been discovered and deployed indepen-
dently by the Nimiq and the ERGO blockchains [5,8], but with no further analysis.

has not been measured. Therefore, it was previously unknown whether
such attacks are taking place in the wild. In this paper, we make em-
pirical measurements of superblock distributions and observe that they
follow the expectation. Hence, we conclude that widespread badness at-
tacks have not occurred in practice, confirming previous suspicions that
such attacks are costly to mount.

For any block B, it is useful to be able to refer to its most recent
preceding p-superblock for any p € N. In addition, it is useful to include
this reference within the contents of the block to which proof-of-work is
being applied so that the miner proves that she had knowledge of the
preceding superblock when B was generated. For this purpose, it has
been recommended [16] that for each block B, instead of including only
a pointer to the previous block, 1g(|C|) pointers will be included, one for
each level u pointing to the most recent p-superblock preceding B. Hence,
under this modification, every block contains a pointer to its most recent
0-superblock ancestor, its most recent 1-superblock ancestor, and so on,
of which there are 1g(|C|). These pointers change the blockchain into a
block skiplist [22,21].

These 1g(|C|) pointers per block are called the interlink. One way to
include them is to replace the previd pointer, which in typical blockchains
points to the previous block hash, with the interlink list of block hashes
to be included wverbatim in the block header. Alternatively, the interlink
list of hashes can be organized into a compact data structure such as a
Merkle tree [18] containing one leaf per superblock level p. The number
of leafs in this Merkle tree is 1g(|C|) and its height is lglg(|C|). Hence,
proofs-of-inclusion in this Merkle tree are of size ©(lglg(|C|)). The root
of this Merkle tree can be included in the block header, replacing previd.
This is done in blockchains adopting interlinking from genesis or through
a hard fork [9,8].

More commonly, to avoid modifying the block header format, the
interlink Merkle tree root can be included in the block’s application data.
In this case, the root of the Merkle tree appears as auxiliary data within a
particular transaction which is included in the block. If the miners of the
blockchain are aware of the interlink, then it can be required that they
included it in their coinbase transaction. The veracity of the interlink
data does not need to be verified when it is included in a block, as invalid
or malicious data in the interlink does not harm security. Hence, it is
possible to include the interlink data in a user transaction. In this case,
the transaction which includes the root of the interlink is called a velvet
transaction and its inclusion is termed a user-activated velvet fork [13].

In practice, this transaction is implemented using an OP_RETURN [1]
committing to the Merkle tree root containing the interlink list in its
leafs. User-activated velvet forks allow the adoption of a new rule without
requiring miners to upgrade their software or be aware of the change, and
are hence backwards-compatible.

It is useful to be able to prove that a block B contains a pointer to a
particular ancestor B’ in its interlink. This statement is proven by a full
node who holds all blockchain data, the prover P, to a superlight verifier
V' who holds only the header of block B. This proof is straightforward.
The header of block B contains the Merkle tree root of the transactions
tree mtry; and is hence known to V. First, a Merkle tree proof-of-inclusion
w1 proves that mir; contains the velvet transaction tx. The velvet trans-
action tx commits to auxiliary data which includes the interlink Merkle
tree root mtry. Secondly, another Merkle tree proof-of-inclusion 7y proves
that mitry contains the hash of B’. While we cannot improve the size of
71, in this paper we describe the improvement in the size of .

Superblock pointers can be used to traverse the blockchain from the
tip back to Genesis in a manner which skips some unnecessary interme-
diary blocks and includes others. The idea is to convince a superlight
verifier V', which only has access to the Genesis block, that a particular
blockchain is the longest one without presenting all block headers. Blocks
of interest that are part of the longest chain can then be revealed to V' in
order to convince them that a particular transaction has been confirmed.
In order to do that, P finds a succinct sample of blocks and places it
in chronological order. That sample is chosen such that each next block
within the sample contains a pointer to its immediate ancestor within the
sample by a commitment in the interlink vector. The prover P sends each
block of the sample to V', along with a proof-of-inclusion for the respective
pointer. The verifier V' can check if the correct pointer has been included.
By cleverly choosing which blocks to collect, a full node can prove to a su-
perlight node that the currently adopted longest blockchain is the claimed
one without presenting the whole blockchain. Hence, instead of transmit-
ting data linear in the chain size @(|C|) as SPV clients do, it is sufficient to
transmit succinct certificates which are only of size ©(polylog(|C])). Such
certificates are called Non-Interactive Proofs of Proof-of-Work [16]. In
this paper, we are not concerned about the mechanism by which the NI-
PoPoWs protocol samples blocks, but only the number of blocks in these
samples and the sizes of their proofs-of-inclusion, which we optimize here.

The NIPoPoWs protocol is parameterized by a security parameter m.
The number of blocks || in a given Non-Interactive Proof of Proof-of-

Work sample is as follows. For each superblock level p € N, consider the
blocks in the honestly adopted blockchain C. Among these, some are of
level p, so denote the count of p-level superblocks in C as |C1# |. If |CT# | >
m, then we call i an included level. Consider the maximum included level
max p. It has been proven [16] that max p = 1g(|C|) —1g(m). The proof =
contains 1.5m blocks for the maximum included level and m additional
blocks for each lower level in expectation. Hence the number of blocks in
a NIPoPoW is || = 1.5m + mmax u = 1.5m + m(1g(|C|) — lg(m)). For
each of these blocks, the proof contains the block hash and the respective
proofs-of-inclusion for the pointer to the preceding ancestor. In this paper,
we optimize the size of these proofs-of-inclusion, which gives a direct
improvement to the size of such proofs w. We note that, in our proposed
construction, we do not decrease the number of required blocks in 7, only
the bytes that need to be transmitted for it on the network.

The size of these proofs is critical. As the majority of the time needed
for mobile wallets to perform the initial synchronization with the network
is spent on downloading block headers from the network, bringing down
the proof size directly improves the performance of superlight clients. In
the context of cross-chain transfers [17], these proofs are posted and per-
sistently stored in smart contracts [7,23] within blockchains which func-
tion as SPV verifiers for other blockchains [10]. Improving their size has
direct financial impact on the protocol, as a larger size incurs a larger gas
cost for storage purposes in case such proofs are stored within Ethereum.

3 Superblock distributions in deployed cryptocurrencies

We measured the superblock distribution in the mainnet Bitcoin block-
chain. Our results are illustrated in Figure 1. As expected, half the block-
chain blocks are 1-superblocks, 1/4 of blocks are 2-superblocks and gen-
erally approximately 27# of the blockchain blocks are u-superblocks. The
horizontal axis denotes the block height, while the vertical axis denotes
the superblock density with respect to the variable difficulty target of
each block, in logarithmic scale.

We performed these measurements as follows. We downloaded the
whole bitcoin blockchain from the Genesis block up to the current tip
of the blockchain (at the time of writing 563,451). We then plotted the
density for each level 4 = 0...6. For the particular level, we traversed
the blockchain using a sliding window of 1000(2#) + 1 blocks. Within
that sliding window, we measured how many blocks of level u exist, and
plotted the ratio of the count of these superblocks within the window to

20 0-superblocks
——— 1l-superblocks
91] A —— 2-superblocks
—— 3-superblocks
—— 4-superblocks

272 Mt A A AP AP frnpans —— 5-superblocks A

——— 6-superblocks

3 AN e NN NP BTN D PNt 1 e NN N o P 000

superblock density
N

2 R N s e A NG N o

0 100000 200000 300000 400000 500000
block height

Fig. 1: Distribution of block levels in Bitcoin. Superblocks are with respect
to variable difficulty targets. Shaded area indicates +10o.

the window size. The plot for level 0 is flat, as all blocks are O-superblocks.
The high-frequency erratic behavior is due to the probabilistic nature of
block generation. We conjecture that lower frequency patterns, especially
those aligned between multiple levels, are due to difficulty adjustment
which incorrectly predicted the underlying computational power for a
given epoch (e.g., due to rapidly changing costs in mining hardware or
cryptocurrency prices).

4 Interlinks as sets of superblocks

In superblock-enabled blockchains, the interlink vector stored in each
block B contains one pointer per superblock level p, namely a pointer
to the most recent superblock preceding B of the respective level p. This
construction, known as an interlink list, is realized by inductively updat-
ing the interlink of the previous block, as shown in Algorithm 1. The al-
gorithm works as follows. Trivially, genesis has an empty interlink vector,
which forms our inductive basis. Given a newly mined block B’ which

already has an interlink vector (the inductive hypothesis), we wish to
construct the interlink vector to be included in the next block, which will
point to B’ itself as well as some of the blocks that B’ points to. This is
done by inspecting the existing interlink, B’.interlink, and constructing a
new interlink interlink by replacing all the entries in B’.interlink that are
of level less than or equal to that of B’ with B’ itself.

Algorithm 1 updatelnterlink

1: function updatelnterlink(B’)
2: interlink <— B’.interlink

3 for 4 =0 to level(B’) do
4: interlink[u] « H(B’)
5: end for

6 return interlink

7: end function

Algorithm 2 Our proposed algorithm, updatelnterlinkSet

1: function updatelnterlinkSet(B")
2: interlinkSet + {H(B')}

return interlinkSet
end function

3: for H(B) € B'.interlink do

4: if level(B) > level(B') then

5: interlinkSet < interlinkSet U { H(B)}
6: end if

T end for

8:

9:

Here, we make the simple observation that the interlink structure
constructed in this manner often contains duplicate pointers. In fact, as
we will show, most of the interlink pointers are duplicate. Space can be
saved by constructing an interlink set instead. This construction is shown
in Algorithm 2. The algorithm returns the exact same data structure as
Algorithm 1, but with duplicates removed. The algorithm operates as
follows. Given an existing interlink set, B’.interlinkSet, it produces a new
set interlinkSet which contains B’ and all the same blocks as B’.interlinkSet
with the exception of those that are of equal or inferior superblock level to
B’. Naturally, when this interlink set is to be committed to a Merkle tree,
it must be ordered in a canonical matter (for example, by increasing block

level) so that its root can be deterministically reproduced and detected.
This canonical ordering may now not be trivial as was in the case for
interlink lists and must be specified by the implementation.

We remark that it does not matter for security purposes whether
duplicates are removed. The reason is that the prover has access to the
whole list of blocks references within the interlink Merkle tree, and hence
can choose the one it needs. On the other hand, the verifier only needs
to ensure that the claimed superblock level is attained, but this can be
done directly by inspecting the hash sent to it by the prover.

We now analyze the savings attained by the above method. We first
analyze the savings in a thought experiment of an ideal, deterministic
execution of the blockchain protocol. While this setting is not realistic,
it provides good intuition about the interlink structure. Subsequently, we
analyze the real probabilistic blockchain protocol. Consider a blockchain
of n blocks.

Definition 1 (Interlink mask). Define the interlink mask of a block B
to be the bitstring containing one bit per superblock level pi. At the position
1, the bitstring contains a 1 if the most recent p-superblock ancestor of
B differs from the most recent (pu + 1)-superblock ancestor of B, or if no
(1 + 1)-superblock ancestor exists. Otherwise, it contains a 0.

This mask contains a 0 at the position of duplicates which can be
eliminated. To measure the efficiency of our optimization scheme, we wish
to count how many Os are contained in the interlink mask of a given
block. Consider, for example, the block highlighted with a dashed border
in Figure 2. Its interlink vector will have an interlink mask of 0101. The
first 0 is due to the previous block which happened to be a 1-superblock.
The latter 0 is due to the most recent 3-superblock overshadowing the
preceding 2-superblock.

In our deterministic thought experiment, consider a blockchain which
grows as illustrated in Figure 2. In this blockchain, every block is a 0-
superblock, every other block is a 1-superblock, every fourth block is a
2-superblock and generally every 2¥-th block is a p-superblock. In this
thought experiment, the interlink mask behaves like a binary number
which is increased by 1 after every block is generated. As such, it will be
a p-digit binary number. As the process passes through all y-digit binary
numbers, the number of Os and 1s is on average equal. Hence, the savings
obtained in the deterministic case are exactly 50%.

3

2 = -
e
CEOECER O

Fig.2: A thought experiment of a deterministically generated blockchain

1
o Ho]

Algorithm 3 The Turing Machine modeling interlink generation.

1: function run(tape)

2: w0

3: while true do

" b & 0,1y

5: if b =1 then
6: tape[u] 1
7 return

8: end if

9: tape[u] < 0
10: w1

11: end while

12: return tape

13: end function

Consider now the probabilistic setting of a real blockchain in an hon-
est execution, where each block generated has an independent probability
of belonging to a given level. The process of block generation can be mod-
elled precisely as follows. Consider the Turing Machine illustrated in Al-
gorithm 3. We begin with a one-sided infinite tape filled with the special
symbol LI. We then run the machine illustrated in Algorithm 3 repeat-
edly over the same tape n times. Once we have completed the n runs, the
tape contains a binary string, which follows the same distribution as the
interlink mask of the n'" block of a blockchain. Each run of Algorithm 3
corresponds to a generation of a block. The algorithm begins at the posi-
tion pu = 0 of the tape. It flips a fair coin b. If the coin turns out to be 1,
the machine writes 1 to the current position of the tape and exits. This is
the event that the block generated has level exactly 0. Otherwise, if the
coin b is a 0, then the block generated has level above 0, and so the first

10

position of the interlink mask will be overwritten by a 0. The machine
then advances and continues to flip coins and overwriting the tape with
0s until a 1 coinflip is attained, at which point it writes a 1 and halts. The
probability of the machine halting at position u or later is 27#, modeling
the probability of a block being a p-superblock. The machine overwrites
with 0 the positions in the tape which are of inferior level compared to
the block level it will generate at the given run. This is the same process
by which superblocks of higher level overshadow preceding superblocks of
lower levels by occupying their space with duplicate pointers that can be
eliminated.

Let B, € {0,1} denote the random variable containing the value of
the ' digit after n such runs. We have that:

SO 1 SRS vl | R
J=i+1u'=1 Jj=i+1

21 -2ty = L g gty

Let B™ denote the number of 1s in the interlink mask after n runs.
Its expectation is then

00 . s 1 & i) 2
:E[;B Z (1— (=27 = 22(_1)+1<i)2"—1

p=1 i=1

We will now show that the savings from the interlink set technique
are significant, specifically that E[B"] < $1g(n) + O(1).

Lemma 1. For any integers i >0 and k > 0,

2! 1 y
— -
2t 1 o(k+1)i _ 9ki +]§)2

Proof. The left-hand side is an infinite geometric series:

21’

i L.
271) = —

We can split it up at some arbitrary index k& > 0:

11

e}

Sy - 3

Jj=0 j=k+1

Applying the formula for geometric series sum from j = k + 1 to oo
on the second term, we obtain:

ok o-ilktD) k 1
Zz J+Z)3222 T+ TS 22 't S o
j=k+1 7=0 7=0
O
Lemma 2. For any positive integers n and k = [lg(n)],
_ _ K3 —1)
Z(1) <Z>22 <lg(n) +2
=1 7=0
Proof.
n k n
- (- (>Z2U—k+1—zz ()
i=1 7=01=0
_I<:+1—ZZ<)
7=01=0
k .
=k+1-> (1-277)" <lg(n) +2
§=0
O

Lemma 3. For any positive integer n and k = [lg(n)],

- ifn 1
—Z(_l) <Z> 9(k+1)i _ 9ki <e

=1

12

Proof.

- (n 1 " (n 1
o ;(_1)1 <z> 9(k+1)i _ 9ki = Z:ZI (1) 9(k+1)i _ 9ki
" (n 1
- ; (z) 2ki (20 — 1)
" (n) 1
2 ()
SHAE
= \i)n
=(1+ %)n <e
O
Theorem 1 (Savings). E[B"] < (lg(n) + 2 +e¢).
Proof.
1 & (n) 2
BB =5 ;(_1)Z<i> 2 —1
1 - i(n b i - in 1
- 520 ()202 AR WE (i)wﬂ)i_w))
< £ ((g(n) +2) +¢)
0

We obtain that E[B"] < Z(lg(n) + 2 + e). Therefore the expected
savings are lg(n) —E[B"] > 3(lg(n) —2—e). Solving (lg(n) —2—¢) >0
we obtain that n > 26 is sufficient for savings to exist. We conclude that
the interlink set method performs better for blockchains with more than
26 blocks.

5 Empirical analysis of improvement

In order to empirically assess the space efficiency of our improvement, we
measured the size of the interlink data structure in the case of interlink

13

lists, the previously proposed format, and in the case of interlink sets, our
newly proposed format. We performed our measurements on the mainnet
for both Bitcoin and Litecoin. Our results are illustrated in Figure 3 and
are similar for both of these coins. The figures assume that both coins
have been velvet forked from their genesis blocks to include the particu-
lar interlink vector format. This is indicative of the future performance
of velvet forking each blockchain to add the respective interlink vector
format.

The new data structure format yields savings of approximately 79%
on average. Based on the theoretical analysis of Section 4, we expect to
see approximately an improvement of 50% in this structure. The extra
29% is due to the historical explosion of difficulty in the mining power
in both cryptocurrencies. The increased difficulty causes a lower variable
difficulty target, meaning that the lowest portions of the superblock levels
remain unoccupied, but are still accounted for in the interlink vector list
approach.

Based on the sizes attained in the interlink vector of the Bitcoin block-
chain, we organized the interlink vector into Merkle trees for both the list
and the set structure and created proofs-of-inclusion of which we mea-
sured the size. The sizes of the inclusion proofs for the two constructions
are illustrated in Figure 4, while the percentile savings are illustrated in
Figure 5.

Interlink size Proof-of-inclusion size| NIPoPoW size
blockhashes bytes hashes bytes KB
Interlink lists 43.12 1380 5.7 183 65.7
Interlink sets 9.04 289 3.6 116 49

Table 1: A comparison of the two interlink constructions in terms of size.

We summarize the savings of our construction in Table 1. The table
was constructed by inspecting the Bitcoin blockchain at the time of writ-
ing. The interlink size column shows the average interlink vector size, in
the number of block hashes and in concrete bytes assuming the SHA256
function is used (as in Bitcoin). The proof-of-inclusion size column shows
the average size of a Merkle proof-of-inclusion, in the number of hashes
and in bytes, when the interlink vector is compacted into a Merkle tree
using SHA256. Finally, the NIPoPoW size column shows the size of a

14

60

—— Block List
——— Block Set

S
(=4
L

'S
(=4
L

of block ids in interlink vector
oo w
S IS
L L

10 1
0 100000 200000 300000 400000 500000
block height
(a) Bitcoin
60
— Block List
~——— Block Set

of block ids in interlink vector

10 1

0 200000 400000 600000 800000 1000000 1200000 1400000
block height

(b) Litecoin

Fig.3: A comparison of interlink vector sizes for interlink block lists and
interlink block sets in two popular blockchains (lower is better)

15

6.0

= Block List
——— Block Set

of block ids in interlink inclusion proof

3.0 1

2.5

0 100000 200000 300000 400000 500000
block height

Fig.4: A comparison of a proof-of-inclusion size in the case of interlink
block lists and interlink block sets in Bitcoin (lower is better)

NIPoPoW in kilobytes (excluding the last k blocks of the chain which
must be sent verbatim irrespectively of which synchronization protocol is
used). The NIPoPoW sizes are calculated assuming Bitcoin had included
the respective interlink Merkle tree root in their headers since genesis. We
measured the size of suffix-proof NIPoPoWs based on the recommended
parameter m = 15 [16] assuming a chain size of |C| = 563,451. The
number of blocks in a NIPoPoW is (m(lg|C| — lgm) + 1.5m) = 250 in
expectation. For the final size calculation of the NIPoPoW, we included
all the data required: The proofs-of-inclusion (based on the size given on
the previous column) and the block headers needed (80 bytes per block).
Our results indicate 79% savings in the interlink sizes and 25% savings
in the NIPoPoW sizes.

16

401

35 1

30 A

25 A

interlink inclusion proof savings (%)

20 1

0 100000 200000 300000 400000 500000
block height

Fig.5: Percentile savings of the block set construction compared to the
block list construction.

References

1. Massimo Bartoletti and Livio Pompianu. An analysis of Bitcoin OP_ RETURN
metadata. In International Conference on Financial Cryptography and Data Se-
curity, pages 218-230. Springer, 2017.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62-73.
ACM Press, November 1993.

3. Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A.
Kroll, and Edward W. Felten. SoK: Research perspectives and challenges for
bitcoin and cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy,
pages 104-121. IEEE Computer Society Press, May 2015.

4. Benedikt Biinz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. FlyClient: Super-
Light Clients for Cryptocurrencies. Cryptology ePrint Archive, Report 2019/226.
https://eprint.iacr.org/2019/226, 2019.

5. Sven Buschbeck. Nimiq developer reference. Available at: https://nimiq-
network.github.io/developer-reference/chapters/block.html#interlink,
2018.

6. Vitalik Buterin. EIP 210: Blockhash refactoring. Technical report, Feb 2017.

7. Vitalik Buterin et al. A next-generation smart contract and decentralized appli-
cation platform. white paper, 2014.

17

https://eprint.iacr.org/2019/226
https://nimiq-network.github.io/developer-reference/chapters/block.html#interlink
https://nimiq-network.github.io/developer-reference/chapters/block.html#interlink

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Alexander Chepurnoy, Dmitry Meshkov, Ilya Oskin, Mike Aksarin, Andrey An-
dreev, Alexander Slesarenko, Denys Zadorozhnyi, and Guillermo Manzanares.
Ergo. Available at: https://ergoplatform.org, 2018.

Elion Chin, Philipp von Styp-Rekowsky, and Robin Linus. Nimiq. Available at:
https://nimiq.com, 2018.

Georgios Christoglou. Enabling crosschain transactions using NIPoPoWs. Master’s
thesis, Imperial College London, 2018.

Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 139-147.
Springer, Heidelberg, August 1993.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, edi-
tors, EUROCRYPT 2015, Part 11, volume 9057 of LNCS, pages 281-310. Springer,
Heidelberg, April 2015.

Kostis Karantias. Enabling NIPoPoW Applications on Bitcoin Cash. Master’s
thesis, University of loannina, Ioannina, Greece, 2019.

Aggelos Kiayias, Peter Gazi, and Dionysis Zindros. Proof-of-stake sidechains. In
IEEE Symposium on Security and Privacy. IEEE, 2019.

Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of
proofs of work with sublinear complexity. In International Conference on Financial
Cryptography and Data Security, pages 61-78. Springer, 2016.

Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-Interactive Proofs of
Proof-of-Work, 2017.

Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In International
Conference on Financial Cryptography and Data Security. Springer, 2019.

Ralph C Merkle. A digital signature based on a conventional encryption function.
In Conference on the theory and application of cryptographic techniques, pages
369-378. Springer, 1987.

Andrew Miller. The high-value-hash highway, bitcoin forum post, 2012.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Available at:
https://bitcoin.org/bitcoin.pdf, 2008.

Thomas Papadakis. Skip lists and probabilistic analysis of algorithms. PhD thesis,
University of Waterloo, 1993.

William Pugh. Skip lists: A probabilistic alternative to balanced trees. In Workshop
on Algorithms and Data Structures, pages 437—449. Springer, 1989.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1-32, 2014.

Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar
Weippl, William Knottenbelt, and Alexei Zamyatin. A wild velvet fork appears!
inclusive blockchain protocol changes in practice. In International Conference on
Financial Cryptography and Data Security. Springer, 2018.

18

https://ergoplatform.org
https://nimiq.com
https://bitcoin.org/bitcoin.pdf

	Compact Storage of Superblocksfor NIPoPoW Applications

