
Decreasing Security Threshold Against Double
Spend Attack in Networks with Slow

Synchronization
Lyudmila Kovalchuk

Input Output HK,
National Technical University of Ukraine
”Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine
lyudmila.kovalchuk@iohk.io

Dmytro Kaidalov
Input Output HK
Kharkiv, Ukraine

dmytro.kaidalov@iohk.io

Andrii Nastenko
Input Output HK
Kharkiv, Ukraine

andrii.nastenko@iohk.io

Mariia Rodinko
Input Output HK,

V. N. Karazin Kharkiv National University
Kharkiv, Ukraine

mariia.rodinko@iohk.io

Oleksiy Shevtsov
Input Output HK,

V. N. Karazin Kharkiv National
University

Kharkiv, Ukraine
oleksiy.shevtsov@iohk.io

Roman Oliynykov
Input Output HK,

V. N. Karazin Kharkiv National
University

Kharkiv, Ukraine
roman.oliynykov@iohk.io

Abstract—We study probability change of double spend attack
on Proof-of-Work consensus protocol depending on network
parameters in the model with continuous time. We analyze effect
of block generation intensity on the network vulnerability to
the attack, and provide analytical expressions for the network
security threshold and for the upper bound of block generation
intensity.

Index Terms—Blockchain, Bitcoin, consensus protocol, double
spend attack

I. INTRODUCTION

We consider the general model of a blockchain network with
arbitrary consensus with one common property: a miner who
creates the next block is chosen randomly from the set of all
miners during the block generation process. The example of
such consensus protocol is the Proof-of-Work protocol. After
creating the block, the miner should share it among other
participants of the network. This sharing process may take
some non-zero time which depends on the network parameters.

At the same time, a situation may occur when malicious
miners (adversaries) are consolidated into a large enough
mining pool, which consists of multiple devices placed one-
by-one, and, as a result, these devices are highly synchronized.
Their synchronization time,compared to honest miners time, is
close to zero. Thus the adversaries ratio that guarantees their
success in a double spend attack may be essentially less than
the ratio of honest miners, i.e. it may be less than 50%.

In this paper, we introduce the concept of threshold, that
is the minimal adversaries ratio which provides a success-
ful attack with probability 1. We obtained a strictly proved
analytical expression for this threshold that demonstrates its

dependence not only on the adversary’s ratio, but also on
such network parameters as time delays and intensity of
block generation. This expression allows to get the relevant
numerical results and to find the adversariesratio that is critical
for a given network. On the other hand, it also allows defining
the maximal intensity of block generation permitted for the
given network without its complete vulnerability to the attack.

II. RELATED WORK

For the first time, a double spend attack was described
in the well-known paper by Nakamoto [1], where he also
obtained expressions for attack probability (which were not
entirely accurate). Later, more consistent results on the attack
probability were obtained in other papers [2]–[4], and the
paper [4] gives completely proved expressions for probability
of such attack. However,the main drawback of these papers
is that the results were obtained under the assumption on the
time delay (i.e. the time between block creation and its sharing
among all miners)to be equal to zero, that is not so for a
real network. At the same time, some papers (e.g., [5], [6])
contain an observation that the probability of successful attack
significantly depends on the time delay and intensity of block
generation. In [7], [8],a problem of constructing asymptotic
estimates of splitting attack probability for the model with non-
zero synchronization time (equal for honest miners and the
adversary) is considered with time being a discrete parameter.
In [9] statements on asymptotic properties of the blockchain
with limited block delivery time were obtained. However, at
the moment, there is no published method to obtain exact
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values for the double spend attack probability depending on
network parameters, in particular, on the synchronization time.

In our paper [10]. we succeeded to provide a partial answer
to this question, having considered two special cases: when the
synchronization time interval of the adversary is the same as
that of honest miners, and when it is two times smaller. Note
that these results were obtained for the model with discrete
time, and that significantly simplifies the process of obtaining
the results.

III. OUR RESULTS

In this paper, we give a complete answer to the question
formulated with the most common assumptions on the network
parameter values. The model, in which our results were
obtained, has the following characteristics:
• time is a continuous parameter;
• synchronization time between honest miners is upper

bounded by a given arbitrary value; moreover, the ad-
versary can delay the block delivery for honest miners
within this upper bound;

• synchronization time of the adversary is also a given
arbitrary value and can be set to zero;

• block generation rate is set to an arbitrary value (both for
honest miners and for the adversary);

• the share of adversarial hashpower is arbitrary.
We give strictly proved expressions for the minimal share of

adversaries in the presence of which their attack is guaranteed
to be successful. At the same time, depending on the network
parameters, this ratio may be essentially smaller than 50%.

Using the results obtained, we also give a solution of
another problem of current interest related to increase in block
generation intensity.

We find, under certain network parameters, the limit up to
which the block generation intensity can be increased so that
the network is not completely vulnerable to attacks.

For all analytically obtained results we will provide numer-
ical examples and the relevant graphics.

IV. SECURITY THRESHOLD: DEFINITION, ANALYTIC
EXPRESSIONS AND NUMERICAL RESULTS

Let us recall that, according to our assumptions, the con-
sensus protocol provides unpredictable block generation (i.e.
the creator of the next block is unknown to all miners until
the block is created).

Let us denote as α the general intensity of block generation
in network,

α = αH + αM ,

where αH , αM are intensities of block generation by honest
miners and by the adversary, respectively.

Also let us denote as DH and DM the time delays for
honest miners and for the adversary, respectively. We make
an assumption in favor of the adversary, and assume that
DM ≤ DH (with the reverse inequality, the results can be
obtained similarly, but in that case honest miners will have

an advantage, and the adversary will need to control more
than 50% to attack) and denote as ∆ = DH − DM ≥ 0 the
difference between time delays.

The values pH = αH

α and pM = αM

α are the ratio of honest
miners and the adversary, respectively. In the case of the PoW
consensus protocol, these values are equal to corresponding
hashrates; for other protocols, the values are the ratio of some
other resources.

In a particular case, when DH = DM = 0, the probability
of a double spend attack is equal to 1 if and only if pM ≥ 1/2
(i.e. the adversaries ratio is not less than 50%). Hence the
term ”50% attack” means the attack which is guaranteed to be
successful. It implies that pM = 1/2 is the security threshold
in this case.

However, for the general case the security threshold is to be
determined in a more complicated way, with account of the
network parameters.

Definition 1. For a given network with parameters α, αH ,
αM , DH and DM its security threshold pst is the minimal
adversarys ratio that guarantees success of a double spend
attack (i.e. if the adversarys ratio is not less than pst, then the
probability of a successful attack is equal to 1).

Further we will obtain the exact value of the security
threshold for the preset network parameters. For this purpose,
we need to describe the following values and relations between
them:
• TH is a random variable that is equal to time spent by

honest miners to create one block;
• T ′H is a random variable that is equal to time spent by

honest miners to create one block and propagate it across
all honest nodes in the network;

• TM is a random variable that is equal to time spent by
malicious miners to create one block;

• T ′M is a random variable that is equal to time spent by
malicious miners to create one block and propagate it
across all malicious nodes in the network.

Note that we make an assumption in favor to adversaries and
assume that they obtain all blocks, even generated by honest
miners, within time interval DM .

As shown in [4], random values TH and TM have exponen-
tial distributions:

FTH
(t) = P (TH < t) = 1− eαHt,

FTM
(t) = P (TM < t) = 1− eαM t, (1)

for the parameters αH > 0, αM > 0.
In our notations, the following equalities hold:

T ′H = DH + TH , T
′
M = DM + TM . (2)

Let us denote by pH the probability that honest miners
create the next block before malicious miners do that(provided
that they started creating this block simultaneously), and
pM = 1 − pH is the probability of the opposite event.
According to [4],



pH =
αH

αH + αM
, pM =

αM
αH + αM

. (3)

Also denote as p′H the probability that honest miners create
the next block and propagate it across all nodes in the network
(at least, across all honest nodes) before malicious miners do
that, and as p′M− the probability of the opposite event, p′M =
1− p′H .

Then

p′H = P (T ′H < T ′M ), p′M = P (T ′M < T ′H), (4)

and p′H + p′M = 1.
Let us denote as T ′H(i) time which honest miners need

to create and propagate the ith block, i.e. time between
events ”(i − 1)th block is created and received by all honest
participants” and ”ith block is created and received by all
honest participants”. Similarly to (2), we also can write the
equality

T ′H(i) = TH(i) +DH . (5)

Then T ′H(i), i ≥ 1 are independent identically distributed
random variables with distribution functions

FT ′
H(i)(t) = FT ′

H
(t) = FTH

(t−DH) = 1− e−αH(t−DH),

for all i ≥ 1, t ≥ DH ,

where the latter equality follows from (1).
Similarly, we define the random variables TM (i), i ≥ 1,

with distribution functions

FTM (i)(t) = 1− e−αM t, for all i ≥ 1.

Also, for n ≥ 1 let us define random variables SH(n),
where

SH(n) =

n∑
i=1

TH(i), (6)

and random variables S′H(n), where

S′H(n) =

n∑
i=1

T ′H(i). (7)

Then SH(n) is the time needed for generation (on condition
of zero synchronization time) of n independent blocks by
honest miners, and S′H(n) is the time that is needed for honest
miners to create and propagate consistently n blocks across the
network.

From (5) we obtain:

S′H(n) = SH(n) + nDH ,

where SH(n) has the Erlang distribution (as a sum of iden-
tically distributed random variables with exponential distribu-
tion, [11], [12]):

FSH(n)(t) = P (SH(n) ≤ t) = 1− e−αHt
n∑
i=1

(αHt)
k

k!
. (8)

Similarly, let us define random variables SM (n) and
S′M (n):

SM (n) =

n∑
i=1

TM (i),

S′M (n) =

n∑
i=1

T ′M (i) = SM (n) + nDM . (9)

A random variable SM (n) is also a sum of independent
exponentially distributed random variables, so it also has the
Erlang distribution [11], [12]:

FSM (n)(t) = P (SM (n) ≤ t) = 1−e−αM t
n∑
i=1

(αM t)
k

k!
. (10)

For a fixed t ≥ 0, let us define a random variable N ′M (t) as
a number of blocks that were created and propagated across
the network by an adversary during time t.

Now we can formulate and prove two auxiliary lemmas
needed to obtain the main result.

Lemma 1. For the given network with parameters α, αH ,
αM , DH and DM the probability p′M that the next block will
be created by an adversary is equal to

p′M = 1− e−αM∆pH ;

the probability p′H that the next block will be created by honest
miners is equal to

p′H = e−αM∆pH .

Proof. According to (2) and (4), the distribution functions of
random variables T ′H and T ′M are as follows:

FT ′
H

(t) = P (T ′H < t) = P (TH +DH < t) =

= P (TH < t−DH) =

{
1− e−αH(t−DH), if t > DH ,

0, otherwise;

FT ′
M

(t) = P (T ′M < t) = P (TM +DM < t) =

= P (TM < t−DM ) =

{
1− e−αM (t−DM ), if t > DM ,

0, otherwise.

Respectively, densities of these distributions are the follow-
ing functions:

fT ′
H

(t) = αHe
−αH(t−DH);

fT ′
M

(t) = αMe
−αM (t−DM ). (11)

The second equality in (4) can be rewritten as:

p′M = P (T ′M < T ′H) = P (TM +DM < TH +DH) =



= P (TM < TH +DH −DM ).

Let us define a random variable ζ, ζ = TH + ∆.
Then

Fζ(x) = FTH
(t−∆) =

{
1− e−αH(t−∆), if t ≥ ∆;

0, otherwise;

fζ(t) =

{
αH · e−αH(t−∆), if t ≥ ∆;

0, otherwise.

Hence fζ(t) = fTH
(t−∆).

Taking into account these notations and using the compound
probability formula, we obtain:

p′M = P (TM < TH + ∆) =

= P (TM < TH + ∆/TM < ∆)P (TM < ∆)+

+P (TM < TH + ∆/TM > ∆)P (TM > ∆). (12)

However,

P (TM < TH + ∆/TM < ∆) = 1, P (TM < ∆) =

= 1− e−αM∆, and

P (TM < TH + ∆/TM > ∆)P (TM > ∆) =

= P (∆ < TM < TH + ∆).

Let us compute the latter probability:

P (∆ < TM < TH + ∆) =

=

∫
x,y:∆<x<y

fTM
(x)fζ(y)dxdy =

=

∫ ∞
∆

(∫ y

∆

fTM
(x)dx

)
fζ(y)dy =

=

∫ ∞
∆

(FTM
(y)− FTM

(∆))fTH
(y −∆)dy =

=

∫ ∞
∆

(
1− e−αMy −

(
1− e−αM∆

))
αHe

−αH(y−∆)dy =

=

∫ ∞
∆

(
e−αM∆ − e−αMy

)
αHe

−αH(y−∆)dy =

= αHe
−αM∆

∫ ∞
∆

(
1− e−αM (y−∆)

)
e−αH(y−∆)dy =

= αHe
−αM∆

∫ ∞
0

(
1− e−αMz

)
e−αHzdz,

where z = y −∆.
After integration we obtain:

P (∆ < TM < T ′H) = e−αM∆ · αM
αH + αM

,

and substituting the resulting expression into the formula (9),
we obtain:

p′M = 1− e−αM∆ + e−αM∆ · αM
αH + αM

=

= 1− e−αM∆ · (1− αM
αH + αM

) = 1− e−αM∆ · αH
αH + αM

=

= 1− e−αM∆ · pH .

So, p′H = 1− p′M = e−αM∆ · pH .

Lemma 2. Let, at some point in time t0, the branch created
by the adversary be n blocks shorter than the branch created
by honest miners. Denote as En the event that at some point
in time t > t0 an adversary was able to create a longer chain,
and let qn = P (En). Then

qn =

1, if p′M ≥ p′H ;(
p′M
p′H

)n
, otherwise.

(13)

Proof. According to the compound probability formula:

qn = P (En) = P (En/T
′
H > T ′M )P (T ′H > T ′M )+

+P (En/T
′
H < T ′M )P (T ′H < T ′M ) =

= P (En−1)p′M + P (En−1)p′H ,

where the latter equality was obtained using Theorem 1.
So,

qn = qn−1p
′
M + qn−1p

′
H . (14)

To solve the equation (14), we write the corresponding
difference equation:

λ2p′H − λ+ p′M = 0,

whose roots are λ1 = 1 and λ2 =
p′M
p′H

. Then the general
solution of (14) is

qn = aλn1 + bλn2 = a+ b

(
p′M
p′H

)n
.

If p′M > p′H , then p′M
p′H

> 1. But, according to the definition
of qn, the condition 0 ≤ qn ≤ 1 holds. So, in this case b = 0,
a = 1, and the only solution of (14) is qn = 1.

If p′M = p′H = 1/2, then we obtain the equation Λ2− 2λ+
+1 = 0, whence λ1 = λ2 = 1 and qn = 1 for all n ≥ 1, with
account of the initial condition q0 = 1.

Finally, if p′M < p′H , then from the boundary conditions
q0 = 1, q∞ = 0 we obtain a = 0, b = 1, and qn =

(
p′M
p′H

)n
.

Now we can prove the main result of this section.
Let us denote as γ = γ(α,∆) the average number of blocks

generated by all miners during the time ∆:

γ = γ(α,∆) = α ·∆.

Theorem 1. For a given network with the parameter γ, the
security threshold pst is the solution of the equation

1− pst =
eγ·pst

2
. (15)



Proof. Let B be a block on which the double spend attack is
performed; z is the number of confirmation blocks after the
block B. Let us define the event Az(k) in the following way:

Az(k) = {NM (S′H(z) = k)} = {X ′M (z) = k}, k ≥ 0,

where X ′M (n) = NM (S′H(n)).
In other words, the event Az(k) is as follows: ”the adversary

created and propagated exactly k blocks, while honest miners
created and propagated z confirmation blocks”.

Also, let us define the event Az as ”the adversary was able to
build a longer chain after the block B received z confirmation
blocks”. Then

Az =

{ ⋃
k≥z

Az(k)

}
∪

{
z−1⋃
k=0

(
Az(k) ∩ En−k

)}
, (16)

where Ez−k is as defined in Lemma 1.
Note that the events {

⋃
k≥z Az(k)} and {

⋃z−1
k=0(Az(k) ∩

En−k)} do not intersect, and the events Az(k) and En−k are
independent. Besides, according to Lemma 1:

P (Ez−k) =

{
1, if p′M ≥ p′H ;
p′M
p′H
, otherwise.

(17)

So, taking into account (16), we obtain:

P (Az) =

∞∑
k=z

P
(
Az(k)

)
+

z−1∑
k=0

P
(
Az(k)

)
P
(
Ez−k

)
.

From the latter equality, taking into account (17), and that∑∞
k=0 P

(
Az(k)

)
= 1, we obtain:

P (Az) =


∑∞
k=z P

(
Az(k)

)
+

+
∑z−1
k=0 P

(
Az(k)

)(p′M
p′H

)z−k
, if p′M < p′H ;

1, otherwise.
(18)

That is, the attack probability is equal to 1 if and only if
p′M ≥ p′H . This condition is equivalent to the condition p′M ≥
1/2. Using Lemma 1, we can rewrite this inequality as

1− e−αM∆pH ≥
1

2
,

that with an elementary transformations can be reduced to the
inequality

2
(
1− pM

)
≤ eαpM∆. (19)

That is, the value p0 is the minimal value of pM , for which
the inequality (19) holds, i.e. p0 is the solution of the equation
2(1− pM ) ≤ eαpM∆, that we were to prove.

In Table 1 we give numerical results for the security
threshold for various values of γ = γ(α,∆) = α ·∆.

Fig. 1 shows dependence of security threshold on the
parameter γ.

TABLE I
SECURITY THRESHOLD FOR VARIOUS VALUES OF PARAMETER

γ = γ(α,∆) = α · ∆

γ 1/30 0.1 0.5 1 2
pst 0.491737 0.475643 0.391798 0.314923 0.221427

Fig. 1. Dependence of Security Threshold on the Parameter γ = ∆αH (the
product of time delay difference and intensity of block generation)

E.g., for Bitcoin, if ∆ = 20 sec and α = 1/600, we obtain
γ = 1/30 and the security threshold is pst = 0.491737. It
means that if the adversarys ratio is not less than 0.491737,
his attack will be successful with probability 1.

V. SOLUTION OF THE INVERSE PROBLEM: FINDING UPPER
BOUNDS FOR INTENSITY OF BLOCK GENERATION

Using Theorem 1, we also may solve another important
problem: to determine the maximal intensity of block creation
at which the network remains resistant to a double spend
attack. Theorem 2 gives the solution of this problem.

Theorem 2. For a given network with parameters pH , pM ,
∆H and ∆M , the network is completely (with probability 1)
vulnerable to a double spend attack if and only if the intensity
α of block generation satisfies the following equality:

α ≥ ln 2pH
(1− pH)∆

(or α ≥ ln 2pH
pM∆ , which is the same).

In Table 2 we adduce the numerical results for the maximal
value of intensity of block generation, at which the network
remains resistant to a double spend attack, for various adver-
sarys ratios.

E.g., for Bitcoin, if ∆ = 20 sec and pM = 0.3, the intensity
may be increased by 33 times to 0.056 blocks per second.
However, in this case the probability of unintentional fork will
also increase, whereby a lot of work will be wasted.

VI. CONCLUSIONS

The paper shows how the intensity of block generation
affects the network security, and exact analytical expressions
are adduced for both the network security threshold and the



TABLE II
MAXIMAL INTENSITY α OF BLOCK GENERATION FOR VARIOUS

ADVERSARYS RATIOS AND VARIOUS ∆

∆pM 1 sec 5 sec 10 sec 20 sec 60 sec
0.1 5.878 1.176 0.588 0.294 0.098
0.2 2.350 0.470 0.235 0.118 0.039
0.3 1.122 0.224 0.112 0.056 0.019
0.4 0.456 0.091 0.046 0.023 0.008
0.45 0.212 0.042 0.021 0.011 0.004

upper bound of block generation intensity. At the same time,
it is essential that increase in the intensity of block generation
results in making the network vulnerable to attacks, and, also
the number of orphan blocks is increased, i.e. the amount of
wasted work is also increased.

Consequently, the problem of fast transaction processing,
which is becoming ever more important, cannot be solved
in the classical blockchain. Therefore, more complex data
structures should be used, like a DAG (Directed Acyclic
Graph, [5], [6], [13], [14]) or Parallel Chains [15] that sig-
nificantly increase the block generation rate (and, accordingly,
the speed of transaction processing) without compromising the
security level.
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[15] M. Fitzi, P. Gaži, A. Kiayias, and A. Russell, “Parallel chains: Improving
throughput and latency of blockchain protocols via parallel composi-
tion.” Cryptology ePrint Archive, Report 2018/1119, 2018.


