Full Analysis of Nakamoto Consensus in
Bounded Delay Networks

Juan Garay', Aggelos Kiayias?, and Nikos Leonardos®

! Texas A&M University, garay@tamu.edu
2 University of Edinburgh & IOHK, akiayias@inf.ed.ac.uk
3 National and Kapodistrian University of Athens, nikos.leonardos@gmail.com

Abstract. Nakamoto consensus, arguably the most exciting develop-
ment in distributed computing in the last few years, is in a sense a recast-
ing of the traditional state-machine-replication problem in an unauthen-
ticated setting, where furthermore parties come and go without warning.
The protocol relies on a cryptographic primitive known as proof of work
(PoW) which is used to throttle message passing with the PoW difficulty
level being appropriately adjusted throughout the course of the protocol
execution.

While the original formulation was only accompanied by rudimentary
analysis, significant and steady progress has been made in abstracting
the protocol’s properties and providing a formal analysis under various
restrictions and protocol simplifications. Still, a full analysis of the pro-
tocol that includes its target recalculation and timestamp adjustment
mechanisms which equip it to operate in its intended setting of bounded
communication delays, imperfect clocks and dynamic participation, has
remained open.

This paper’s main result fills this gap presenting a proof that Nakamoto’s
protocol achieves, under suitable conditions, consistency and liveness in
the above setting. A number of technical tools and techniques are intro-
duced that may be of independent interest in the analysis of blockchain
protocols.

1 Introduction

Nakamoto’s blockchain protocol [23] is a consensus protocol where parties engage
in the collection and organization of transactions in a ledger without having any
information about each other or even precise knowledge of the number of parties
running the protocol at any given time. This is in contrast to classical models
and results in consensus (aka Byzantine agreement) [25,19] and other funda-
mental distributed computing tasks, where it is typically assumed that parties
have pairwise authenticated communication channels or are initialized with the
public keys of all participants. Instead, Nakamoto’s blockchain protocol relies on
the cryptographic primitive known as proof-of-work (PoW, aka cryptographic
puzzles) [10,27,2,15]), to throttle message transmission and stochastically cre-
ate opportunities for unifying the parties’ possibly diverging views, despite the
presence of a subset of them acting adversarially.

Given that the original protocol was presented with only a rudimentary anal-
ysis focusing solely on the application context of fund transfers, a number of
works have attempted to isolate the protocol’s properties and provide a formal
analysis. The first analysis, presented in [12], focused on a synchronous execu-
tion model, and assuming the probability of the parties to solve a PoW over
a single message-passing round is suitably restricted, proved that the protocol
satisfies consistency and liveness as long as the total computational power in the
system is in favor of the honest parties. Two limitations of this first analysis were
that the target recalculation mechanism of the blockchain protocol which adjusts
the hardness of PoWs was excluded and that the execution model considered
synchronous communication rounds.

Addressing the latter problem was undertaken in [24] (with further improve-
ments in follow-up works [18,26]), where the blockchain protocol was analyzed
in the so-called bounded-delay model (cf. [9])*, showing the protocol secure for a
favorable choice of network delay A with respect to its hard-coded PoW hardness
parameter, and its insecurity in the general case where A is chosen adversarially.
Technically, the main challenge to address in transitioning to the bounded-delay
model is the fact that the usefulness of a certain event in the protocol execution
(e.g., the creation of a PoW at time t) is affected by events that are happening
at times up to ¢t + A forward in time (e.g., the creation of another PoW) and
hence this dependence asks for additional care to be applied in the probabilistic
analysis.

The problem of analyzing the target recalculation mechanism was addressed
in [13], albeit again in the synchronous communication model, by introducing a
setting where parties’ participation is allowed to change round by round following
a predetermined schedule that has a bounded rate of change. The main technical
difficulty addressed in that setting was the fact that PoW successes are not
independent events in the execution since the difficulty of the PoW primitive is
determined by preceding execution events instead of being fixed throughout, as
in [12, 24].

While the above works have significantly improved our understanding regard-
ing the behavior of Nakamoto consensus in successively more refined theoretical
models, the full analysis of the actual protocol has been elusive. Specifically, all
previous works analyzed simplified versions of the protocol removing or adjust-
ing protocol clements that deal with bounded delay networks and fluctuating
participation. For instance, all previous works ignore the way the protocol ad-
justs local clocks based on on-chain timestamps and the actual timestamp rules
for incoming blocks, mechanisms that Nakamoto (presumably) included to deal
with the fact that no protocol can realistically assume perfectly synchronized
clocks in an imperfect network. Manipulating timestamps and exploiting the

* In this model, formulated by Dwork, Lynch and Stockmeyer [9], there is an upper
bound A, unknown to the protocol, in the delay that the adversary may inflict on
the delivery of messages.

protocol’s timestamp validation mechanisms are a well known attack vector in
the Bitcoin community.”

Thus, the question is whether Nakamoto’s consensus—with all its adjustment
mechanisms included—retains its properties in a bounded-delay network. Impor-
tantly, we want to answer this question when the parties’ number is dynamically
changing without following a predetermined schedule, i.e., it is adaptively se-
lected by the adversary, possibly even reacting to events that happen in the
protocol execution, as long as the rate of change is bounded by a constant.

Our results. Our main result is the proof that Nakamoto’s protocol achieves
consistency and liveness in bounded-delay networks with adaptive dynamic par-
ticipation. While our results to some extent draw from the previous analyses of
[12,24,13], technically our objective is significantly more challenging, and new
techniques and insights are needed in order to realize it.

Importantly, our work for the first time takes into account the way that
Nakamoto’s protocol adjusts local clocks using on-chain timestamps and val-
idates incoming block timestamps. Specifically, the protocol allows incoming
block timestamps in the near future, as determined by a protocol parameter and
rejects blocks that have a timestamp in the past of the median time of a specific
number of blocks on-chain—also a protocol parameter. These mechanisms open
up an array of attack vectors that now should be considered in the security proof.

At the core of our analysis is the function f(7,n), which determines the
probability that n parties executing the protocol at a certain time find a PoW
whose difficulty is determined by the “target” T' (here, without loss of general-
ity, n equates the number of parties with the number of CPUs of equal power
running the protocol). Given that n is unknown and continuously changing,
Nakamoto’s protocol adjusts 1" at regular intervals called epochs. As we show,
the protocol’s resilience to attacks will stem from its ability to keep f(T,n) close
to a suitable value that is favorably positioned with respect to the, otherwise
unknown, network delay A. Starting with the assumption that the protocol is
initiated at an appropriate f value, the blockchain protocol will recalculate T
to approximate that initial value by estimating the number of active parties
n per epoch. The estimation is based on the observed production of PoWs as
recorded in the blockchain itself and the relative timings of their production. A
complication here is that timestamps may be manipulated in various ways dur-
ing the protocol execution and this is something that the analysis should take
into account.

The first major technical challenge is to work in a probabilistic setting where
the random variables corresponding to the cumulative difficulty of PoWs (rather
than their number) collected by the protocol participants capture the adaptive
dynamic evolution of participants as well as the fact that some of these variables’
values at a certain round may be affected by events in the future. The latter issue
asks for a lower bound estimation of the aggregate difficulty (in terms of PoWs

® E.g., timejacking and poison-pill attacks or difficulty-raising by timestamp manipu-
lation, see http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html, and
https://bitcointalk.org/index.php?topic=43692.msgh21772#msgh21772.

of different targets) collected by the honest parties over a period of time that is
“isolated” from any future PoW event for a period of A rounds. At the same
time, we need an upper bound on the aggregate difficulty amassed by adversarial
parties while accounting for the fact that the adversary may choose to work
on very difficult PoW instances for which it will be impossible to control their
stochastic advantage via concentration bounds, due to high variance. We address
this by introducing a suitable concept of “typical” execution where concentration
bounds can be meaningfully applied to the relevant random variables.

The second major technical challenge is the analysis of the clock adjustment
mechanism and validation of incoming block timestamps, and the rule for deter-
mining the timestamp for the next block (namely, that the new time stamp must
be greater than the median of a certain number of blocks—see Section 3). The
correctness of the rule critically depends on the existence on protocol executions
of “winning streaks” by honest parties. Accordingly, we call such executions hot
hand and we demonstrate how they result in regular high concentrations of hon-
estly contributed blocks, that is necessary to ensure that honest parties’s chains
have timestamps that move forward. Our analysis also reveals a property of the
Bitcoin blockchain that was before not formally understood and can be seen as a
strengthening of chain quality (CQ) [12]: honest chains are not only guaranteed
to have regular contributions by honest parties as CQ dictates, but these contri-
butions, with overwhelming probability, will come in clusters, so that regularly
it will happen that in a sequence of 2kyeq — 1 consecutive blocks at least kyeq
blocks will be contributed by the honest parties, where kp,eq is a small constant.
Prior to our work such statements could only be proved for large values of kyeq
bounding the adversary by 1/3 and hence they were unsuitable for arguing the
security of Nakamoto’s parameterization which imposes a lower bound on a block
timestamp by the median of the last 2k;,.q — 1 = 11 blocks and seeks to argue
protocol security for an adversarial bound below 1/2.

Putting together the properties of typical and hot-hand executions we distill
a set of conditions, stated here at a high level (refer to Section 4.2 for the detailed
description), under which consistency and liveness of Nakamoto consensus can
be shown. First we need honest majority, i.e., the honest parties’ hashing power
exceeds the adversarial parties’ power. Second, we need epochs to be long enough
to be able to adequately measure the change in the hashing power so it is reflected
in the target recalculation (refer to C1 in Section 4.2). Then we need an upper
bound on the network delay in terms of the block production rate and the other
parameters (refer to C2 in Section 4.2) as well as a bound on the rate the parties
dynamically change over time (C3 in Section 4.2).

Remark. The reader might wonder why the number of parties is allowed to
adaptively dynamically evolve following even an exponential increase while the
upper bound on the delay A is assumed fixed throughout the execution and not
allowed to dynamically evolve as well. The reason is that Bitcoin was designed
with exactly this setting in mind. (To see evidence of this consider that PoW
production in the protocol is fixed to be at 10 min intervals, irrespectively of
the computational hashing power available to the network which has increased

significantly—and at periods of times even exponentially— since its initiation in
2009.) Designing a protocol that can absorb changes in A as well is an interesting,
albeit rather theoretical, open question.

Other directions for future work include proving the tightness of the nec-
essary conditions for security. Recent work has achieved such tight bounds but
for simplified variants of Nakamoto’s protocol—without target recalculation and
timestamp adjustments (cf. [14,7]). Finally, improving Nakamoto’s protocol so
that it does not depend on an external clock and it becomes its own timekeeper
would be interesting to demonstrate. Combining permissionless synchronization
techniques developed in the proof-of-stake setting [3] with the 2-for-1 PoW tech-
nique of [12] would be a possible way forward.

Differences with previous versions. The current version of the paper signif-
icantly extends the analysis to include clock adjustment and blockchain times-
tamp validation mechanisms consistent with Nakamoto’s implementation.

Organization of the paper. The remainder of the paper is organized as fol-
lows. In Section 2 we present the network, protocol execution and adversarial
model; in particular, we define the dynamic bounded-delay setting where we our
analysis is performed. In Section 3 we present Nakamoto’s consensus protocol, in-
cluding its target recalculation and timestamp calculation functions, followed by
the desired properties the blockchain protocol should satisfy. Section 4 contains
the bulk of our analysis, in particular the relevant protocol parameters and the
conditions mentioned above under which Nakamoto consensus can be achieved,
followed by characterizations of executions that are typical (Section 4.4) and
hot-hand (Section 4.5), where the basic blockchain properties are satisfied 4.7),
from which proofs of consistency and liveness can be derived (Section 4.8).

Some standard mathematical facts, detailed protocol descriptions and some
of the proofs are presented in the appendix.

2 Model

We describe our protocols in a “full” partially synchronous model where both
communication and processors are partially synchronous. Specifically, in the
model there is an upper bound A in the delay (measured in number of rounds)
that the adversary may inflict to the delivery of any message, and an upper
bound @ on the potential difference in party’s clocks (also measured in number
of rounds—see below). The precise values of A and ¢ will be unknown to the
protocol (and in particular regular protocol participation will not rely on using
A or @ as a time-out parameter). However, the security of the protocol will be
dependent on how specific protocol parameters relate to A and @ in ways we will
explicitly define. Observe that “rounds” still exist in the model, but now these
are not synchronization rounds where messages are supposed to be delivered to
honest parties. Next, we adapt Canetti’s formulation of “real world” notion of
protocol execution [4-6] for multi-party protocols, to the dynamic setting with
a varying number of parties, bounded delays and partially synchronized clocks.

Round structure and protocol execution. As in [12,24], the protocol exe-
cution proceeds in “rounds” with inputs provided by an environment program
denoted by Z to parties that execute the protocol I1. The adversary A is “adap-
tive,” and allowed to take control of parties on the fly, as well as “rushing,”
meaning that in any given round the adversary gets to observe honest parties’
actions before deciding how to react. Network and hash function access is cap-
tured by a difussion (“gossiping”) functionality and a random oracle (RO) func-
tionality, respectively (see below). The diffusion functionality is similar to those
in [12,24]; it allows the order of messages to be controlled by A (i.e., there is
no atomicity guarantees when multiple messages are sent) and, furthermore, the
adversary is allowed to “spoof” the source information on every message (i.e.,
communication is not authenticated). A can inject messages for selective delivery
but cannot change the contents of the honest parties’ messages nor prevent them
from being delivered beyond A rounds of delay—a functionality parameter.

The environment program Z determines the protocol execution; it creates
and interacts with other instances of programs at the discretion of a control pro-
gram C. Following [5], (£, C) forms of a system of interactive Turing machines
(ITM’s). The only instances allowed by C are those of the protocol program I7,
an adversary A. These are called ITT’s (interactive Turing Machines Instances).
We refer to [5] for further details on the mechanics of these aspects of the model.
The only additional feature that is relevant to our setting is that we assume each
instance is initialized with a special Boolean flag denoted by active which is set
to false upon initialization.

Functionalities available to the parties. We next present the functionalities
that are available to all parties running the protocol and the adversary and
abstract the hash function (RO), the network and parties’ clocks. Note that the
functionalities below share common state and realizing them by other protocols
is outside the scope of the present work; in our exposition, they merely capture
explicitly the assumptions we make about our execution model.

— The RO functionality. It accepts queries of the form (Compute,) and (Ver-
ify, 2,y). For the first type of query, assuming = was never queried before,
a value y is sampled from {0,1}* and it is entered to a table Ty. If = was
queried before the pair (z,y) is recovered from Tp. The value y is provided
as an answer. For the second type of query, a membership test is performed
on the table. Honest parties are allowed to ask one query per round of the
type Compute and unlimited queries of the type Verify.® The adversary A is
given a bounded number of Compute queries per round and no Verify queries
(the adversary can easily simulate those locally). The bound for the adver-
sary is determined as follows. Whenever a corrupted party is activated the
bound is increased by 1; whenever a query is asked the bound is decreased
by 1 (it is not necessary that the specific corrupted party makes the query).

5 Note that we exclude denial-of-service attacks from our modeling, where A depletes
the running time of parties by sending them too many messages for verification.

— The diffusion functionality. Message passing and round bookkeeping is main-
tained by this functionality. A round variable globalclock is initialized to 0.
For each party a string denoted by RECEIVE() is maintained and the party
is allowed to fetch the contents of its corresponding RECEIVE() at any time.
The functionality records all messages of the form (Diffuse,m) it receives
from the parties. Completion of a round for a party is indicated by sending
a special message (RoundComplete). The adversary A is allowed to receive
all the currently recorded Diffuse messages at any time and messages to
the RECEIVE() strings as desired. The round is completed when the adver-
sary submits its (RoundComplete) message. In such case, the functionality
inspects the contents of all RECEIVE() strings and includes any messages m
that were diffused by the parties A rounds ago but not contributed by the
adversary to the RECEIVE() tapes (in this way guaranteeing message deliv-
ery up to A rounds). It also flushes any diffuse records that are placed in the
RECEIVE() string of all parties. The variable globalclock is then incremented
and a new round begins.

— The clock functionality. This functionality, parameterized by &, maintains
parties clocks’ values within this bound with respect to global time. The
parties use (RequestTime) to obtain its local clock value from the function-
ality. The adversary A is allowed to issue (AddShift, P, d),with d € [-®, §],
commands to the functionality, in order to alter party P’s clock value, so
long as |d| < @, i.e., honest parties’ clocks are roughly synchronized. *

The dynamic partially synchronous setting. Given the functionalities as
described above observe that contrary to prior formalizations, the adversary can
choose the termination of the round thus deciding on the spot how many honest
parties were activated adaptively. (In previous works [12, 24, 13] the adversary is
restricted to a preset number of activations.)In each round, the number of parties
that are active in the protocol is denoted by n, and is equal to the total number
of parties that have submitted the (RoundComplete) indicator to the diffusion
functionality and have their internal flag active set to true. Determining n,. can
only be done by examining the view of all honest parties and is not a quantity
that is accessible to any of the honest parties individually. The number of parties
controlled by A in a round r is similarly denoted by t,.

Parties, when activated, are able to read their input tape INPUT() and com-
munication tape RECEIVE() from the diffusion functionality. If a party finds that
its active flag is false, it enters a “bootstrapping” mode where it will diffuse
a discovery message and synchronize with the rest of the active parties in the
network (in the case of Nakamoto consensus, the party will send a request for the
latest blockchains, will collect all of them until a time-out parameter is reached
and then will pick the most difficult one to start mining).® When the synchro-
nization phase terminates, the party will set its active flag to true and after

" Refer to [16] for further details on clock functionalities.

8 Refer to Section 4.2 (specifically, the discussion on the Apootstr parameter) for an
adequate time-out value depending on the epoch’s length and probability of at least
one honest party out of the initial number of parties solving a PoW.

this point it will be counted among the honest parties. An honest party goes
“offline” when it misses a round, i.e., the adversary issues a (RoundComplete)
but that party misses the opportunity to complete its computation. To record
this action, whenever this happens we assume that the party’s active flag is
set to false (in particular this means that a party is aware that it went offline;
note, however, that the party does not need to report it to anyone). Also observe
that parties are unaware of the set of active parties. As in previous works (e.g.,
[12]), we assume, without loss of generality, that each honest party has the same
computational power.?

We will restrict the environment to fluctuate the number of parties in a
certain limited fashion. Suppose Z with fixed coins produces a sequence of parties
n, where r ranges over all rounds of the execution. We define the following
property, which is a finite-sequence version of a similar property introduced in
[13] for infinite sequences.

Definition 1. For v € RY we call (n;),cp0,5), where B € N, (v, s)-respecting
if for any set S C [0,B) of at most s consecutive integers, max,cgn, < -
min,eg Ny

We say that Z is (v, s)-respecting if for all A and coins for Z and A the
sequence of parties n, is (7, s)-respecting.

The term {VIEW}; 4 z(2)}.e0,1}+ denotes the random variable ensemble de-
scribing the view of party P after the completion of an execution running proto-
col IT with environment Z and adversary A, on input z € {0, 1}*. We consider
a “standalone” execution without any auxiliary information and we will thus
restrict ourselves to executions with z = 1*. For this reason we will simply refer
to the ensemble by VIEW% A,z The concatenation of the view of all parties ever
activated in the execution is denoted by VIEW 7 4 =.

Properties of protocols. In our theorems we will be concerned with properties
of protocols IT running in the above setting. Such properties will be defined as
predicates over the random variable VIEW 7 4,z by quantifying over all possible
adversaries A and environments Z. Note that all our protocols will only satisfy
properties with a small probability of error in A as well as in a parameter k that
is selected from {1,...,A} (with foresight, we note that in practice one would
be able to choose k to be much smaller than A, e.g., k = 6).

3 The Nakamoto (Ledger) Consensus Protocol

The Nakamoto (ledger) consensus protocol can be abstracted in four main sub-
routines. The main subroutine has two modes operation: regular and bootstrap-
ping. In the bootstrapping mode, the node listens to the network for a certain
period of time to collect sufficient number of blocks so that it determines a le-
gitimate chain to build upon. The node will remain in this mode for a number

9 A real-world mining pool or party of a certain hashing power can be thought of as
a set of flat-model parties.

of rounds that is determined by a parameter Apqyoisty- When that time window
passes the node will switch to regular mode.

During regular mode, the node’s state can be abstracted as a pair (st,C).
We follow previous work that abstracted the Bitcoin backbone [13] and we ab-
stract considerations related to managing secret-keys and transaction issuance
on behalf of the node. These would be incorporated in an input selection func-
tion I(-) that acts and updates the node’s state st. We focus on the chain data
structure C that is defined as follows. Let G(-) and H(-) be cryptographic hash
functions with output in {0,1}". A block with target T € N is a quadru-
ple of the form B = (r,prev,z,ctr) where prev € {0,1}*,2 € {0,1}*, and
r,ctr € N are such that they satisfy the predicate validblockT(B) defined as
(H(ctr,G(r,st,x)) < T) A (ctr < 232). Observe that each block B is associated
with a timestamp 7.

A blockchain, or simply a chain C is a (possibly empty) sequence of blocks;
the rightmost block by convention is denoted by head(C) (note head(e) = ¢) The
blocks in a chain are connected in the sense that if B; = (r;, prev;, z;, ctr;) then
Biy1 = (riy1,previpl, Tiv1, ctripq) that satisfies prev,11 = H(ctry, G(r;, prevy, x;)).
By convention By = ¢ and prevg = <. In practice, By, a.k.a. the “genesis” block,
may be selected to be a valid block and furthermore contain some unpredictable
string to ensure that no attacker could pre-mine blocks. Nevertheless, these fea-
tures are not significant for our analysis and we ignore them.

Regarding the timestamp sequence of a chain, it should satisfy the condition:

Tit1 > median(ri, . ,Tz‘,zkmedJrz),fOI‘ 7> 2kmea — 1 (1)

where kpneq is a protocol parameter which in the case of Bitcoin’s parameteriza-
tion it is set to 6 blocks.

At any point in the execution a node needs to determine the current time. We
abstract this by a query RequestTime to the clock functionality, which responds
with a reading that is within @ of the correct time. Note that, in practice, Bitcoin
achieves that by querying the system time, the median time of its neighbors in the
peer-to-peer network as well as the human operator if a substantial deviation
exists between the first two readings.'® Such considerations are abstracted in
our modeling by the slack that is adversarially introduced in the RequestTime
response from the clock functionality. In terms of determining the timestamp to
use for the next block, the node should take into account the rule of the median
of the past 2kyeq — 1 blocks (see equation (1) above): the current time will be
“pushed” forward to ensure that it is ahead of the median.'!

We measure the length len(C) of a chain C as the number of blocks it contains.
We will use the notation C* to denote the chain that results after “pruning”

10 As stated in https://github.com/bitcoin/bitcoin/blob/master/src/timedata.cpp,
“never go to sea with two chronometers; take one or three” (cf. triple modular re-
dundancy).

"' Refer to the source code, https://github.com/bitcoin/bitcoin/blob/master/src/
miner.cpp, line 30: nNewTime = std::max(pindexPrev->GetMedianTimePast()+1,
GetAdjustedTime()) ;.

the k latest blocks. Moreover, if C; is a prefix of Co we write C; < Ca. The data
contained in the blocks of a chain, collected in a vector will be denoted by x¢.
Similarly, r¢ is the sequence of timestamps of C.

Next, we describe how the appropriate target T' is determined for each block.
The initial target is a parameter of the protocol denoted by Tgy. In the Bitcoin
parameterization this is set to 2224 and is the highest possible target. The target
is updated every m blocks, which is another parameter of the protocol. In the
Bitcoin parameterization it is set to 2016. The initial number of parties in the
system, denoted by ng, are assumed to be capable of producing m blocks in a
length of time equal to Aepoch. In Bitcoin’s parameterization Aepoch corresponds
to a length of time equal to 2 weeks. We will refer to this length of time as an
“epoch.” The difficulty of each block is measured in terms of how much harder
it is to produce a block compared to a block using the initial target Tpy; i.e., the
blocks of the initial epoch have all difficulty 1. We take a slightly more general
approach and define the difficulty of a block to be 1/T. We will use the notation
diff (C) to denote the sum of the difficulties of all blocks in chain C.

The difficulty of the next block to be mined is determined by a function D(-)
that takes as input the sequence of timestamps corresponding a given chain C.
The function D(-) parses the timestamps and identifies the last complete epoch
of m blocks; if no such epoch is defined by C the target is by definition equal 7.
Let r be the timestamp corresponding to last block of the last complete epoch,
T its target and rg the timestamp corresponding to the last block of the previous
epoch (or the genesis block timestamp if such epoch does not exist). The function
D(-) returns as the next target the value 7' Ze_p:fh unless 5= ¢ [L, 7], in which
g
“dampening factor” and in the case of Bitcoin’s parameterization it is set to 4.

epoch

case it returns 7 -7, when > 7, 0r 1/7-T, otherwise. The parameter 7 is a

Blockchain properties. The blockchain data structure’s two fundamental prop-
erties, adapted from [12,13], are related to the Nakamoto consensus properties
of Consistency and Liveness (see below).

The common prefiz property, parameterized by a value k € N, considers
an arbitrary environment and adversary, and holds as long as any two parties’
chains at two rounds have the earlier one subsumed in the former as long as k
blocks are removed.

Definition 2 (Common Prefix). The common prefix property Qc, with pa-
rameter k € N states that for any two players Py, P» holding chains C1,Co at
rounds 1,12, with v < rg, it holds that lek <Cs.

The second property, called chain quality, quantifies the honest-party contri-
butions in terms of aggregate difficulty that are contained in a sufficiently long
and continuous portion of a party’s chain. As a result, the property restricts the
amount of difficulty (and hence number of blocks) contributed by the adversary
to any sufficiently long segment of the chain.

Definition 3 (Chain Quality). The chain quality property Qcq, with param-
eters i € R and ¢ € N, states that for any party P with chain C in VIEW 1 4 z,

10

and any segment of that chain of difficulty d such that the first block of the seg-
ment was computed at least £ rounds earlier than the last block, the blocks the
honest parties have contributed in the segment have total difficulty at least p - d.

Nakamoto consensus properties. As mentioned in Section 1, Nakamoto con-
sensus (aka “ledger consensus”) is the problem where a set of servers (nodes,
parties) operate continuously accepting inputs (“transactions”) and incorporate
them in a public data structure called the ledger. More specifically, the problem
is to maintain a ledger of transactions serialized in the form of a transaction
sequence L; satisfying the following two properties [12,13]. Below we make the
distinction between £ and Z, with the first denoting the settled ledger in the
view of the party, and the second denoting the settled ledger with a sequence of
transactions appended that are still not settled in the view of the party. In the
context of Nakamoto’s Bitcoin protocol, we note that £ will be the sequence of
transactions defined by the chain C held by the party, while £ will be the se-
quence of transactions defined by the prefix CI*, where k is a security parameter.

— Consistency (cf. Persistence [12]): For any two honest parties Py, Pa,
reporting L1, L at rounds r; < 7, respectively, it holds that £; is a prefix
of EQ.

— Liveness (parameterized by u € N, the “wait time” parameter): If a trans-
action tx is provided to all honest parties for u consecutive rounds, then it
holds that for any player P, tr will be in L.

We remark that the problem is a variant of the state machine replication
problem [28] (see also [11]).

4 Nakamoto Consensus in Bounded-Delay Networks

In this section we present the full analysis and proofs of Nakamoto’s consen-
sus protocol in the originally envisioned dynamic environment where parties—
without synchronized clocks—come and go, resulting in the adjusment of blocks’
difficulty values. In particular, we formally specify (Section 4.2) the two condi-
tions mentioned in Section 1 under which consistency and liveness of Nakamoto
consensus can be shown.

4.1 Additional notation, definitions, and preliminary propositions

Following [13], our probability space is over all executions of length at most
some polynomial in x and A and we denote by Pr the probability measure of
this space. Furthermore, let £ be a random variable taking values on this space
and with a distribution induced by the random coins of all entities (adversary,
environment, parties) and the random oracle.

If at round r exactly n parties query the oracle for target T', the probability
at least one of them will succeed is

f(Tn)=1—(1—-pT)" <pTn, where p=1/2".

11

Note that Aepoch and the initial target 7y implies in our model an initial estimate
of the number of parties ng; specifically, ng = 2"m/(TyAepoch), i-€., the number
of parties it takes to produce m blocks of difficulty 1/Ty in time Aepoch. We
denote fo = f(Tp,no) and we drop the subscript from f; and simply refer to it
as f. Note the inequality

[(Tn) 1 (1—pD)"
I f(Tn) ~ (- pT)"

The first inequality is 1/(1 —) > 1 + = and the second is Bernoulli’s.

We will next present some definitions which will allow us to introduce a few
(“good”) properties. These properties are an intermediate step towards proving
common prefix and chain quality, but are also interesting in their own. The next
two definitions are about the notions of “good chain” and “good round.” The
underlying notion of “goodness” is concerned with the targets that the honest
parties are querying the random oracle for. At a round r of an execution the
n, honest parties might be querying the random oracle for various targets. We
denote by T™" and 7™** the minimum and maximum of those targets.

With respect to parameters that appear as “free” in the following definitions
(such as v, A, ¢), please refer to the next subsection.

Definition 4. — Round r is good if f/2v* < pn, T™® and pn, Tm*> < (1 +
NS

— Round r is a target-recalculation point of a chain C, if C has a block created
in r and with height a multiple of m.

— A target-recalculation point r is good if the target T for the next block sat-
isfies f/2v <pn,T < (1L+6)vf.

— A chain is good if all its target-recalculation points are good.

— A chain is stale if for some u it does not contain an honest block computed
in u—£€—2A,u.

— A sequence of 2K — 1 consecutive blocks in a chain are called an honest me-
dian if there exists among them an honest block with timestamp the median
of the timestamps of these blocks.

— The blocks between two consecutive target recalculation points u and v on a
chain C are an epoch of C and the duration of the epoch is u — v.

=(1-pI)™"—-1>0+pT)" —1>pIn. (2)

At a certain round of an execution, we would like to prove that the chain
of every honest party has several desirable properties (along the notions just
defined). This, however, entails a stronger statement in the following sense. At
any given round there might exist chains which do not belong to any honest party
(perhaps because the adversary kept them private), but have the potential to be
adopted by one (i.e., have sufficient difficulty). With that in mind we define the
following set of chains of a round r.

(C belongs to an honest party) or (3C’ € E, that belongs
to an honest party and either diff(C) > diff(C") or
diff (C) = diff (C") and head(C) was computed ’
no later than head(C’))

S, =<C€eE,

12

where C € E, means that C exists and is valid at round r.
Next, we define a series of useful predicates with respect to such set of chains.

Definition 5. For a round r, let:
— GOODCHAINS(r) £ “For all u < r, every chain in S, is good.”

— GooDpROUNDS(r) £ “All rounds u < r are good.”
— NOSTALECHAINS(r) £ “For all u < r, there are no stale chains in S,.”

— MEDIANTIME(7) 2 “For all u < 7 and C € S,, there is an honest median

computed in the last |e>m/f| rounds of any completed epoch in C.”
— DURATION(r) & “For allu < r and C € S, the duration A of any epoch in

C satisfies grpgye - < A< 2(L48)y - 5.7

— COMMONPREFIX(r) £ “For all u < r and C,C' € S,, head(C N C") was
created after round u — £ — 2A.

Our goal is to show that, with high probability, an execution satisfies the
common prefix and chain quality properties. To fulfill this goal we will first
focus on showing that the execution satisfies the predicates we defined above.
In particular, we will argue first that none of these predicates can fail, assuming
proper initialization. Towards that goal, we first specify a number of random
variables.

Random variables. In our analysis, we will be interested in estimating the
difficulty acquired by honest parties during a sequence of rounds. Their number
at a round r is denoted n, and define the real random variable D, equal to the
sum of the difficulties of all blocks computed by honest parties at round r. Also,
define Y;. to equal the maximum difficulty among all blocks computed by honest
parties at round r, and @, to equal Y;. when D, =0 forallr <u <7+ A and 0
otherwise. We call a round r such that D, > 0 successful and one wherein Q,. > 0
isolated successful. Regarding the adversary, let ¢, denote the number of parties
he controls at round r (equivalently, the number of random-oracle queries he can
make at round r). Note that n, and ¢, are determined by the environment at
the beginning of round 7 and should conform to the (v, s)-respecting definition
(Definition 1). We wish to upper bound the difficulty he can acquire during a set
J of queries. Looking ahead, to obtain a good upper bound that holds with high
probability, we will need some upper bound on the difficulty of a single block.
However, the adversary may query the oracle for arbitrarily low targets and may
obtain blocks of arbitrarily high difficulty. The following definition will allow us
to work around these technical obstacles.

Consider a set of consecutive adversarial queries J and note that the exe-
cution up to the first query in J determines the target associated with it. We
denote this target by T'(J) and say that T'(J) is associated with J. We define
A(J) and B(J) to be equal to the sum of the difficulties of all blocks computed
by the adversary during queries in J for target at least T'(.J)/7 and T'(.J), re-
spectively. That is, queries in J for targets less than T(J)/7 (resp. T(J)) do
not contribute to A(J) (resp. B(J)). While considering consecutive epochs of a

13

particular chain, the target can either increase by at most 7 (and B(J) will be
appropriate), or decrease by at most 7 (and A(J) will be useful).

For a set of rounds S or queries J we write n(S) = > g n, and similarly
t(S), D(S), Q(S). An interval of rounds (or queries) is a set of consecutive rounds
and is denoted using bracket notation. For example, if u and v are two rounds
such that v < v we write [u,v) for {r:u <r <wv}.

Let &._1 fix the execution just before round r. In particular, a value E,_; of
&r_1 determines the adversarial strategy and so determines the targets against
which every party will query the oracle at round r and the number of parties n,
and t,, but it does not determine D,. or @,. For an adversarial query j we will
write £;_; for the execution just before this query.

Proposition 1. Consider an execution E._i such that n, = n, T/ = T™ma*,
min __ min
and T =T™". Then,

(1 — f(T™*, n)]pn < E[Y,|€—1 = E,_1] < E[D,|E,_1 = E,_1] = pn,
E[Yr2|€r_1 =FE._q] < pn/T™in, var[D,|E, | = E, 1] < pn/T™™.

Proof. Suppose that the n honest parties at round r query for targets T, ..., Ty,.
Observe that all these variables are determined by F,_1. We have

E[Y, |61 = m]—szH 0] =Y p [T -£150)

i€[n] i<j i€[n] j€ln]
Z I = r@=n] =" pll = (T, n)] = pn[l — F(T™,n)],
i€n] jE[n] 1€[n]

where the third inequality holds because f(T, n) is increasing in T'. For the upper
bound on variance,

1 T
Var[DT|gT_1 = Er—l] < Z T2 7 Z S Tmln
mm]i i€[n] L

and E[Y,2|€,_1 = E,_4] is bounded alike. O

The following proposition collects a few useful inequalities that hold in a
(7, 8)-respecting environment.

Proposition 2. Let U be a set of at most s consecutive rounds in a (7, $)-
respecting environment and S C U.

(a) For anyn € {n,:r €U}, %< nl(‘g') < n.

(8) m(U) < (1+ Ugin ().
(c) 1813, es(pnr)® <A, cqpmr)?.

Proof. The first part is proved in [13] and is a direct consequence of the definition.
For the second, note that n(U) = n(S) + n(U \ S). By the first part we obtain
that the greatest n € {n, : r € U\ S} is at most yn(S)/|S| and so n(U \ S) <

|U\ S|yn(S)/|S|. For the third, note that pn/y < pn, < ypn for any r € S. The
inequality follows from Theorem 10, since A/G < (y+1/7)/2 < . O

14

4.2 Parameters and Their Conditions

Our formalization of the protocol involves a number of parameters that have
already appeared in the text above. With respect to the environment,
— §: Advantage of honest parties'? (¢, < (1 — &)n, for all r);
— (7,8) : It restricts the fluctuation of the number of parties across rounds
(Definition 1); we set s = 7m/f.
An important parameter, which is a function of the protocol’s initialization pa-
rameters ny and Tp, is
— f € (0,1): The probability at least one honest party out of ng computes a
block for target Tp; i.e., f(To,no).
The protocol strives to maintain the probability of a successful round as close f
as possible. This is the task of the target recalculation function.
— m € N: The length of an epoch in number of blocks;
— 7 > 1: The dampening filter.
The value 7m/ f is the longest an epoch might take to complete and v > 1 is an
estimate of how much the number of parties can change in such a time interval.
The next two parameters are related to security.
—)\ : The security parameter;
— Kk =9(N\): The length of the range of the hash function.
To achieve security, we will argue concentration of several random variables.
Furthermore, in any exponentially long (in the security parameters) execution
bad events are bound to happen.
— e Quality of concentration of random variables;
— L : The total number of rounds in the execution.
For L polynomially bounded in A, our statements will fail with probability
poly(\)(27% + ™).
In our analysis we will study events over intervals of rounds. In order to
achieve desired probability of error (in the order of e=*) we will need to work
with intervals of at least ¢ rounds, where

B 4(1 + 3¢)
L= (102 fAH
For our analysis to go through, the above parameters should satisfy certain

conditions which we now discuss. First, we will require a lower bound on the
epoch length which incorporates £.

34kmed+6 25 1 2.6
/\T+£+2A, 8(A +P), (z+3A)-(1f237}. (C1)

~max{A, 7} > /\—‘ , fore< % (3)

2

em {
~—— > max
f

12 Note that we denote the number of honest parties at round r by n, and the number
of parties controlled by the adversary by t,, so that the total number of parties is
nr +t-. Although this is not standard, it simplifies several expressions and is also in
agreement with notation in [13].

15

Second, the number of rounds A that the adversary may delay messages relative
to the block production rate should be upper bounded.

1= (1+0VfP2>1—e (C2)

Third, we will require in our analysis that the fluctuation rate of the parties is
absorbed by the honest parties’ advantage.

v <146/8. (C3)

The time-out parameter for bootstrapping Apootstr, should allow enough time for
the messages of a joining party to reach active parties and enough time for their
response to come back. The drift between the clocks of two honest parties should
not be greater than Ag,g, otherwise one honest party might not accept a block
computed by another. These amount to requiring Apootstr > 24 and Agyg > 29.

4.3 Chain Growth Lemma

We now prove the Chain Growth Lemma. This lemma appears already in [12] in
a model with fixed difficulty and fixed number of parties. In [17] the name “chain
growth” appears for the first time, and where the authors explicitly state a Chain
Growth Property. In [13], the lemma is proved in a synchronous model allowing
variable difficulty and varying number of parties. Here we give a different proof
that works in the dynamic bounded-delay model. The lemma provides a lower
bound on the progress of the honest parties, which holds irrespective of any
adversary.

Lemma 1 (Chain Growth). Suppose that at round u of an ezecution E an
honest party broadcasts a chain of difficulty d. Then, by round v, every honest
party has received a chain of difficulty at least d+Q(S), where S = [u+ A, v—A].

Proof. If two blocks are obtained at rounds which are at distance at least A,
then we are certain that the later block increased the accumulated difficulty. To
be precise, assume S* C S is such that, for all ¢,5 € S*, |i — j| > A and Y; > 0.
We argue that, by round v, every honest party has a chain of difficulty at least

d+ Y YV, >d+> Q.
res res

Observe first that every honest party will receive the chain of difficulty d by
round u + A and so the first block obtained in S* extends a chain of weight at
least d. Next, note that if a block obtained in S* is the head of a chain of weight
at least d’, then the next block in S* extends a chain of weight at least d’. O

4.4 Typical Executions

We now define formally our notion of typical executions. Intuitively, the idea
that this definition captures is as follows. Suppose that we examine a certain

16

execution E. Note that at each round of E the parties perform Bernoulli trials
with success probabilities possibly affected by the adversary. Given the execu-
tion, these trials are determined and we may calculate the expected progress the
parties make given the corresponding probabilities. We then compare this value
to the actual progress and if the difference is reasonable we declare E typical.
Note, however, that considering this difference by itself will not always suffice,
because the variance of the process might be too high. Our definition, in view
of Theorem 8, says that either the variance is high with respect to the set of
rounds we are considering, or the parties have made progress during these rounds
as expected.

Beyond the behavior of random variables described above, a typical execution
will also be characterized by the absence of a number of bad events about the
underlying hash function H(-) which is used in proofs of work and is modeled as
a random oracle. The bad events that are of concern to us are defined as follows
(recall that a block’s creation time is the round that it has been successfully
produced by a query to the random oracle either by the adversary or an honest

party).

Definition 6. An insertion occurs when, given a chain C with two consecutive
blocks B and B’, a block B* created after B’ is such that B, B*, B’ form three
consecutive blocks of a wvalid chain. A copy occurs if the same block exists in
two different positions. A prediction occurs when a block extends one with later
creation time.

Given the above we are now ready to specify what is a typical execution.

Definition 7 (Typical execution). An ezecution E is typical if the following
hold.

(a) For any set S of at least ¢ consecutive good rounds,
(1= &L = (L+8)72f1%pn(S) < Q(S) < D(S) < (1 + €)pn(S).
(b) For any set J of consecutive adversarial queries and o(J) = 2(1+2)A/T(J),
A(J) < p|J| +max{ep|J|, Ta(J)} and B(J) < p|J|+ max{ep|J|, a(J)}.
(¢) No insertions, no copies, and no predictions occurred in E.

We will be interested in comparing the computational power of the adversary
against that of the honest parties in a set of consecutive rounds S. However,
in the bounded-delay model with delay A, the adversary can mute the honest
parties for the final A rounds. Calculations summarized in the following lemma
will be used repeatedly.

Lemma 2. Consider a typical execution in a (v, s)-respecting environment. Let
S={r:u<r<v} be aset of at least £ consecutive good rounds and J the set
of adversarial queries in U = {r:u— A <r <v+ A}.

17

(a) (1+e)plJ| <Q(S) < D(U) < (1+4€)Q(S).

(b) T(NA(T) < 32((11;78279 ~€2m or A(J) < (1 + €)p|J|; similarly

TT(J)B(J) < gpisezs - €m or B(J) < (1+e)p|J].

(¢) If w is a good round such that |lw —r| < s for any r € S, then Q(S) >
(1 —e)[L — (1 +0)7v2f)2|S|pnw/v. If in addition pn,T(J) > f/272, then
A(J) < (1—0+3€)Q(S5).

(d) In at most £+ 2A rounds can be produced at most 8((1_6)2

51673 -€2m blocks of a
good chain.

The main result of this section is that almost all polynomially bounded in &
and \ executions are typical.

Theorem 1. Assuming the ITM system (Z,C) runs for L steps, the probability
of the event “C is not typical” is bounded by O(L?)(e™> +27%).

4.5 Hot-Hand Executions

In this section we define a new class of executions: hot-hand executions. The
structure such executions are required to have will allow us to show that an
honest median (cf. Definition 4) exists sufficiently often. At a high level, a hot-
hand execution contains special streaks of honest successes. What is special
about these streaks is the structure of the surrounding rounds, which is such
that the honest blocks that correspond to the streak are guaranteed to form an
honest median.

We define a sequence {(V;, R;) : i > 0} of random variables taking values in
Z x N, with respect to a sequence of rounds 1,79, ... and a target T. A round r
is called strongly-isolated successful if an honest query was successful for target
T in round r and no other query was successful for target T in the interval of
rounds (r — A, r+ A). Set Ry = rqy and for ¢ > 0 set R;11 = rj41 where r; > R;
is the least round such that either an adversarial block was created in r; or
r; — A+ 1 was isolated successful. In the former case V; is minus the number of
blocks acquired by the adversary during round r; and in the latter it is equal to
one. For an interval of rounds S = [u, v], we denote > V;, where the sum is over
{i:u < R; <v}, as V(S) when the sequence {(V;, R;) : i > 0} is defined with
respect to the sequence of rounds u,u +1,...,v.

Definition 8. An interval that contains at least kyeq strongly-isolated successful
rounds and no other honest or adversarial blocks were computed in it is called a
streak. A streak [u,v] such that V(S) > 0 for any S = (v,v'] and V(S) > 0 for
any S = [u',u) is @ winning streak.

For a given execution F we associate with each set S = [u,v] of at most s
consecutive rounds the target T' of the first honest query in S. We want to say
that T is good if E, forces T to be good for each round in S. Formally, let n’
be the maximum number of honest parties in U = (v — s,u]: n’ = max,cy ny.
Note that F, determines n’ and that, since |[U U S| = s, a (v, s)-respecting

18

environment forces n'/y < n, < yn’ for each r € S. We say T is good for S in
E.if pn’T < (1+6)~f. Note that this implies pn, T < (1+6)y2f for each r € S.

Definition 9 (Hot-hand execution). An exzecution E is hot-hand if for any
interval S of at least 6~ *4*meat6)\3 rounds such that the associated target T is
good for S in E, there is a winning streak in S with respect to T'.

We wish to show that an execution is hot-hand with overwhelming probabil-
ity. Since we are studying a small set of rounds each time, we are going to absorb
the fluctuation 7 in the number of parties in the advantage ¢ of the honest par-
ties. Specifically, recall the definition of n’ in the paragraph before Definition 9
and set n = [n’/v]. In a (v, s)-respecting environment, the number of honest
parties in S may fluctuate between n and v?n (because y?n > yn' > [yn']).
Our plan is to reduce the question of the existence of a winning streak in S
to a question in a static execution with n honest parties and a non-adaptive
adversary controlling a fixed number of ¢ < (1 — §/2)n parties. This is going to
work because, for v <1+ §/8,

(Y =Dn+(1-080yn<[(2-0)1+6/8)2—1n< (1-45/2)n.

Thus, we may handle the fluctuation of parties above n, by allowing the adversary
to control all of the excess parties.

We make this argument formal via a coupling argument. We show that the
probability that an interval of rounds is a winning streak in this static setting
is at most that in the dynamic setting where the honest parties fluctuate be-
tween n and v2n against an adaptive adversary. To prove this, we generate both
distributions by starting with the maximum number |(2 — §/2)v%n] of oracle
outputs per round. In the dynamic setting, the strategy of the adaptive adver-
sary determines in the beginning of each round how many of these outputs will
be discarded, while in the static setting this number is fixed. Note that in the
dynamic setting there are at least as many honest parties as in the static one.
Furthermore, we distribute this excessive number of at most (72 — 1)n honest
queries to the static adversary. Under this construction, every honest query in the
static setting is also an honest query in the dynamic. Conversely, every query in
the dynamic setting is a query in the static one. The following properties follow.

— Every successful round in the static setting is also successful in the dynamic.
— If there are no successful queries in a round of the static setting, then the
same holds for this round in the dynamic setting.

We observe now that if an interval [u, v] is a winning streak for a given sequence
of oracle outputs in the static setting, then this interval is also a winning streak
for this sequence in the dynamic setting. Indeed, it follows directly from the
above properties that any isolated successful round r in the static setting is still
isolated in the dynamic one. Now consider an interval S = [u/,u). If V(S) is
non-negative in the static setting, then it is also non-negative in the dynamic
setting, as only more honest queries are introduced.

19

Winning Streaks in the Static Setting. We now proceed with the analysis
in the static setting outlined above.

Lemma 3. For any round u, the probability that V(S) > 0 for all S = [u,v] is
at least 0/8.

Proof. This follows by Theorem 12 applied to the sequence (V; : i > 0). We need
to show that E[V;] > /8 for any ¢ > 0.

For each nonnegative integer k set qx = Pr[V; = —k] and ¢ = Pr[V; = 1].
Setting pr = pT" and recalling >, <, 2" = 1/(1 — z),

n+t)r prn n —
q= 2(1 —PT)(+tyr _PTT (1 _PT)(+t)(24-1)
1—pr
r>0

_ 1 pTN (1
1= (1—pp)tt) 1 —pp
Under the hypothesis that 7" is good it holds pyn < (1 + §)vf. Using this,
Bernoulli’s inequality, and Condition C2 we obtain the lower bound
pro(l—pr)?™H04 L (1487004 (1-9? 2 de
pr(n+t) 2-4/2 2-6/2 7 4-46°

_ pT)(TH_t)(QA_l)- (4)

Since E[Vi] = ¢ — >~ kqr, we now turn to the sum.

Z kg, = Z kz (1- (n+t (Z)pl}(l _pT)n+t—k

k>0 k>0 r2>0

= (1—pn)" Y (1—pr (n+t)rzk(k> F(1—pr) "

r>0 k>0

_ _ _ e _ _Prt —pr)”
= pr

The third equality holds because the last sum is the expected value of a binomial
and equals prt and the last equality by the identity Y, +,2" = 1/(1 —z). Next,
by inequality (2), pr(n+t)(1 —pr)"T" < 1— (1 — pr)™**; thus,

prt(l — pr)" 2-9 1 2-4 L
Z;)qu = (n+t)(1 — pp)ntt) 16 (1—pr)" RYET A —prn
9_§ 1 2-6§ 1 (2-0)1+¢)

SA_ 1-(+0nf Sd-0 Vi~ 4-s
For the second inequality we use t < (1 — §/2)n, the third is Bernoulli’s, the
fourth is prn < (1 + 8)72f, the fifth Condition C2. Finally, since € < §/16,
2-6/4 2-6+94/8 o 0

EVil>==5 i—s %

20

Let X, and Z,. denote the number of successful queries by honest parties and
the adversary in round r respectively. Consider an interval S and for (X, 2) =
(Xr, Z, :r € 5) let h(X, Z) be equal to the number of winning streaks beginning
at a round in S. We claim that

E[h] > §2|8|/2FmeatC, (5)

To verify this, observe that since ¢ > 1/2 the probability a streak begins at
a round 7 is at least 1/2Fmed. Trrespectively of the round r, by Lemma 3, the
probability that V([u,r]) > 0 for all u is at least /8. Similarly, for any round v
that the final block of the streak is computed, the probability that V([v,u]) > 0
is at least §/4. Since these events are independent, the bound follows.

We will now show that h(X,Z) is concentrated around its expected value.
To that end, it will be convenient to assume that each X, and Z, never surpass
A. The probability more than A queries out of n are successful can be bounded
as in [22, Theorem 4.4] by (eprn/A)* < e~ (note that Condition C2 implies
(14+0)y2f <e<6/16 and so A > 1> 16prn > eprn).

Lemma 4. Assuming that neither the honest parties nor the adversary acquired
more than k blocks in a single round of an interval S, then f is K-Lipschitz over
S for K = max{kmea + 2,2[k/kmea]}

Proof. We are interested in the maximum value of |h(x,z) — h(z’,2")| over
(z,2),(2',2") € {0,1}!5! that differ only on the i-th position. Consider win-
ning streaks W = [u, v] and W’ = [/, v'] and a round r. We say W’ lies between
W and r if v < «' and v' < r. Suppose z; > z} and z; > 1. We claim that
any winning streak W of (z,z) with the property that at least k/kmeqa Winning
streaks lie between W and 7 is also a winning streak of (z’, z’). This is because we
can assume |z; — z}| < k and so the winning streaks in between counter-balance
the difference |z; — 2}|. Note also that z; > 1 implies that the blocks computed
in round ¢ do not themselves belong to a streak. It follows that even if z; = k
and z} = 0, the winning streaks that are “lost” in (2, 2’) are at most [k/kmed]|
to the right of ¢ and at most the same number on the left. In the case z; = 1
and z; = 0, these streaks can be at most 2. However, the block computed at %
can belong to at most kyeq streaks. The statement follows. O

Theorem 2. The probability an execution is not hot hand is poly()\) - e,
Proof. We apply Theorem 9 to the sequences of random variables (X}, Z;) (v
that correspond to N = [§~#4Fmeat6)3] rounds of a static execution with target
T, n honest parties, t < (1 — §/2)n adversarial parties, and I; the event that
neither the honest parties nor the adversary acquired more than A\ blocks in
round j. We apply the theorem with ¢; =\, d = N, Pr[(X,Z) ¢ I'] < Ne™* (as
discussed before stating Lemma 4), and ¢ = §2N/2Fmeat6 — Ne=2 We obtain

§4N — O(N?)e
\24Fmea+6

Prih(z) <0] < exp{— } + N2 = poly(\) - e,

where the last equality uses Condition C1. We finish the proof with a union
bound over the relevant intervals. O

21

Towards the existence of an honest median. We now prove a couple of
lemmas that will be useful in the forthcoming analysis in proving the existence of
an honest median. These lemmas describe what happens when an honest block
is orphaned and will be useful in arguing that blocks in winning streaks which
are deep in an epoch cannot be orphaned.

Lemma 5. Suppose that for round v there exist chains C and C' in S, such that
C\ (CNC") contains an honest block computed in round r. Let u the round that
the last honest block on C NC' was computed. Then, for the interval S = (u,]
containing v, V(S) < 0.

Proof. Let B be the set of honest blocks that contributed to V(S). We prove
V(S) < 0 by exhibiting the existence of a set of adversarial blocks B’ computed
in S such that {de B:BeB}C{de B: BeB'}.

Cousider a block B € B extending a chain C* and let d = diff(C*B). If
d < diff(CNC’), let B’ be the block of C NC’ containing d. Such a block clearly
exists on C N C’ and was computed after round w by the adversary (due the
definition of u). If d > diff(C N C’), note that by the definition of an isolated
successful round there is a unique B € B such that d € B. Since C and C’ are in
S, they are at least as heavy as C*. It follows that there is B’ ¢ B either on C
or on C’ that contains d. O

Lemma 6. Suppose a block was computed by an honest party at round r and
does not belong to the chain of an honest party at round ' > r + A. Then v is
contained in an interval S such that V(S) < 0.

Proof. Let B be the block computed at round r by an honest party P. We are
going to apply the previous lemma for a round v and chains C,C’ € S, that
we will define according to the following cases. If P adopted a chain C’' not
containing B, then let v be the previous round. Otherwise, let v be the least
round not earlier than r + A such that an honest party P’ does not have B in
its chain C’. Let C be the chain of P at round v. In both cases, C and C’ belong
in S, and the previous lemma supplies the set S. O

4.6 Properties of Typical and Hot-Hand Executions

In this subsection we study in detail the validity of the predicates of Definition 5
over the space of typical and hot-hand executions in a (v, s)-respecting environ-
ment. All statements in this subsection assume a (v, s)-respecting environment
for s > 2(148)y?m/ f. Furthermore, the Conditions are assumed to hold for the
initialization parameters ng and Tg.

Our first lemma says that the adversary cannot maintain a chain by himself
for too long. The reason is that the honest parties will progress faster and his
blocks will be orphaned.

Lemma 7. In a typical execution and a (v, s)-respecting environment

GOODROUNDS(r — 1) = NOSTALECHAINS(7).

22

Proof. Suppose—towards a contradiction—C € S, and has not been extended
by an honest party for at least £ + 2A rounds and r is the least round with this
property. Let B be the last block of C computed by honest parties at a round w
(possibly w = 0 and B the genesis). Set S = [w+ A, r — A] and U = [w, r]. Note
that by our assumption |S| > £. Suppose that the blocks of C after B span k
epochs with corresponding targets 17, ..., . For i € [k] let m; be the number of
blocks with target T; and set M =my +---+mg and d =mq /Ty + - - +my/Tk.
Our plan is to contradict the assumption that C € S, by showing that all chains
in S, have more difficulty than C. By Chain-Growth (Lemma 1), all the honest
parties have advanced (in difficulty) during the rounds in U by Q(S). Therefore,
to reach a contradiction it suffices to show that d < Q(S5).

When k > 2 we may partition these M blocks into k£ — 1 parts so that each
part has the following properties: (1) it contains at most one target-recalculation
point, and (2) it contains at least m/2 blocks. For each i € [1,k), let j; € J be
the index of the query during which the first block of the i-th part was computed
and set J; = [j;, ji+1) (Definition 7(c) assures j; < ji4+1). We claim

-y

=1 %

>g-

-1
- <) (L+eplJil < (1+e)plJ] < Q(S).
1

5\§

For the first inequality, consider part i. We have T; = T'(J;) and—Dbecause of the
first property of the partition—two possible cases for T;11: either T; < T;4q <
7T; or T; /7 < Tj11 < T;. In the first case, the difficulty of the blocks acquired in
Ji is at most B(J;) and their number at most 77;B(J;). In the second case, the
difficulty of the blocks acquired in J; is at most A(J;) and their number at most
T;A(J;). In either case, since the adversary acquired at least m/2 blocks in J;,
the desired bound follows from Lemma 2(b). The final inequality is Lemma 2(a).
If £ < 2, let J denote the queries in U starting from the first adversarial query
attempting to extend B. Then, Ty = T(J) and Ty > T(J)/7; thus, d < A(J). If
A(J) < (1 +¢)p|J], then d < Q(S) is obtained by Lemma 2(a). Otherwise,

1 1 1 €

AT < plJ| + Ta(J) < (Z n 1)m(J) - 2(g + 1) (; + g)TA/T(J),
where we used Definition 7 and the assumption A(J) > (1 + ¢)p|J|. Consider
only the first £ rounds in S. In a (v, s)-respecting environment, pn(S) > pn,£/~.

Furthermore, since w < r, w is a good round and so pn,T; > f/(27?). Putting
these together, pn(S) > £f/(273T}). By Definition 7 and the value of £,

(1 =)l — (1+8)y2f]Afe 20— o)1 +3e)7A

@(S) > 23T () = 2T(J)

Using the inequality for A(J) above and e < 1/8, we arrive at our desired
contradiction d < Q(S5). O

The following lemma says that two “longest” chains cannot diverge for too
long. We say below that d € R is contained in a block B and write d € B, when
B extends a chain C and diff (C) < d < diff(CB).

23

Lemma 8. In a typical execution and a (v, s)-respecting environment
GOODROUNDS(r — 1) = COMMONPREFIX(7).

Proof. Suppose head(CNC’) was created in round v and let u < v be the greatest
round in which an honest party computed a block on C N C'. Let U = (u,r],
S =[u+ A,r— A], and let J denote the adversarial queries that correspond to
the rounds in U. We claim that, if r — v > £ + 24, then

2Q(S) < D(U) + A(J).

Let us first verify that this contradicts Lemma 2. First, if |S| > ¢, then by
Lemma 2(a) it holds D(U) < (1+ 4€)Q(S). Next, Lemma 7 implies that neither
C nor C’ is stale. This allows us to apply Lemma 2(c) and obtain A(J) < (1—-4d+
4€)Q(S). Putting these together with Condition C2 we obtain D(U) + A(J) <
(2=0504+86)Q(S) < 2Q(S).

Towards proving the claim, associate with each w € S such that @, > 0 an
arbitrary honest block that is computed at round w for difficulty @Q,,. Let B be
the set of these blocks and note that their difficulties sum to Q(S). We argue
the existence of a set of blocks B’ computed in U such that BN B = and
{d€e B:B e B} C{de B: B e B} This suffices, because each block in B’
contributes either to D(U)—Q(S) or to A(J) and so Q(S) < D(U)—Q(S)+A(J).

Consider a block B € B extending a chain C* and let d = diff(C*B). If
d < diff(C N C') (note that w < v in this case and head(C N C’) is adversarial),
let B’ be the block of C N C’ containing d. Such a block clearly exists and was
computed after round uw. Furthermore, B’ ¢ B, since B’ was computed by the
adversary. If d > diff (C N C’), note that there is a unique B € B such that d € B
(recall the argument in Chain Growth Lemma 1). Since B cannot simultaneously
be on C and C’, there is a B’ ¢ B either on C or on C’ that contains d. O

Lemma 9. In a typical execution and a (v, s)-respecting environment
GoODROUNDS(r — 1) A GOODCHAINS(r — 1) = DURATION(7).

Proof. Assume—towards a contradiction—that DURATION(r) is false. Then, there
exists a w < r and a chain C € S, with an epoch of target T' and duration A
that does not satisfy

1 m 5 m
A <A<2(1+6)y 7
We consider the earliest epoch for which one of these bounds on A fails.

For the upper bound, Lemma 7 implies the existence of two honest blocks
in this epoch computed at least A — 2¢ — 4A rounds apart. Let w and v be
these rounds and define S = [u, v). Assuming A > 2(1+6)y?m/ f, Condition C1
implies |S| > 2(1 + 6)(1 — €)y*m/f. Using this bound and our hypothesis that
the rounds in S are good in Definition 7,

A, 18]

22T >(1+6)(1—e€)?-

Q(S) > (1= &)1 = (1+6)7*/]

m
>?,

NI 3

24

where we used Condition C2 for the last inequality. This contradicts Chain
Growth, since the honest parties at round v already have more than m/T diffi-
culty on top of u.

To prove the lower bound we are going to argue that even if the honest parties
and the adversary join forces they still cannot obtain m blocks. Let w and v be
the target-recalculation points of the epoch. Define S = [u,v] and J the set of
queries available to the adversary during the rounds in S starting with the first
query for target T (so that T'(J) = T'). Without loss of generality, assume S has
size exactly LW - %] > {. We have
V18]

e (RO

D(S)<(1+4+e)pn(S)<(1+e)(1+9)- 5T

Since the epoch is assumed to be good, pn, T < (1+4)~ f; also, the environment is
(7, s)-respecting, thus n(S) < yn,|S|. Putting these together verifies the second
inequality,while the third follows from the bound on |S].

With respect to the adversary, if 7T B(J) < em/4, then the total number of
blocks is less than m and we are done. Otherwise, by Lemma 2(b),

B(J) < (14 plJ] < (1+)L =8)pn(S) < (L =)L +€) - 7,

and the total count of blocks is again less than m by Condition C2. O

Lemma 10. In a typical and hot-hand execution and a (v, s)-respecting envi-
ronment
GOODROUNDS(r — 1) = MEDIANTIME(r).

Proof. Consider a chain C € S, with a target-recalculation point v < r. We prove
that there is an honest median in C computed in S = (v— [e2m/f],v—{—2A).

We will first argue that we may focus on the single target T' of the epoch.
Suppose—towards a contradiction—that there is a round w € S in which an
honest party drops C to adopt a chain C’ of target T" # T. It follows that
there is a target-recalculation point after head(C’ N C). This cannot be on C,
because then the epoch would have lasted less than |€?m/f] rounds in violation
of Lemma 9. Thus, C’ contains a target-recalculation point v < w. But then, no
honest party would adopt C during (u, v]. Since v —u > €+ 2A, C would become
stale contradicting C € S,..

Since the execution is hot hand, there is a winning streak S* C S. By Chain
Growth the chain of each honest party increased by ky,q blocks during S*. Since
S* is a streak, no adversarial block lies between two of these blocks. We need to
argue that all these blocks will belong to the chain of every honest party. If this
is not the case, then it must be that either the first block of the streak or the
last one belongs to a fork. In either case, suppose this block was computed in
round w. By Lemma 6 there is an interval S such that w € S and V(S) < 0. Let
S'=5*NS and S” =5\ 5. Note that S’ is nonempty since w € S’. It follows
from the definition of a winning streak that V(S’) > 0 and V(S”) > 0. Adding
these inequalities we obtain a contradiction. a

25

Lemma 11. In a typical and hot-hand execution and a (v, s)-respecting envi-
ronment GOODROUNDS(rr — 1) = GOODCHAINS(7).
Proof. Note that it is our assumption that the first round (the genesis) is a good
target-recalculation point. Therefore, it suffices to show that if a recalculation
point u in a chain C € S, is good, then the next one at v = u + A < r is also
good. Let T be the target of the epoch starting at u and 7" the target of the next
one. We wish to show that f/2v < pn,T" < (14 6)vf. To that end, let «’' and
v’ be the timestamps of the two target-recalculation points and set A’ = v' — /.
We prove first the lower bound. If A’ > ym/f, then T > ~T (using v < 1)
and so pn, T > pn,T' /v > pn, T > f/27, because u is assumed to be a good
target-recalculation point. We assume now A’ < ym/f, which implies A" <
(T"/T)(m/f). Define S = [u,v], 8" = [u—€—2A,v+ £+ 2A], and J the set of
queries available to the adversary in S’. By Condition C1,

€2m

16(1 +)2 f =

where the last inequality follows from the lower bound on A implied by Lemma 9.
Lemma 10 implies v’ > u — e2m/f — &, since u’ will be forced by the honest
median to be at most e2m/f rounds away from the timestamp of the median
which is in turn at most @ rounds away from wu. Also, v < v + Aguq. Putting
these together and using again the lower bound on A and Condition C1 as above

|[A— A eEm/f + @+ Apg < 9¢2/8 -
A T m/20+ 62 f —€em/f — P — Apa — 1/2(1+)72 — 9€2/8

where the last inequality uses Condition C2. By the last two displayed inequal-
ities

S| =A+20+4A < A+ (14 €2/8)A,

6e2,

1S] < (1+€*/8)(1 +6e) A < (1+¢e)A'.

Clearly, all blocks were computed during honest queries in .S or adversarial ones
in J. We now bound the contribution of each.

B(J) < (1 =81+ e)pn(S") < (1= 8)(1+)pynoS| < (1= 6)(1 +€)*pynuA'.

Similarly, D(S) < (1 + €)pn(S) < (1 + €)pyn,A’. Assuming pn, T < f/2v we
obtain the contradiction

7 m m

2ypn, A" < 2vpn,, - T 7 < T

For the upper bound, let S = [u + ¢ + 3A,v — £ + 3A]. Note first that if

A< 7n/7fa then T < T/7 and so pan/ < anuT' < pn, T < (1 + 5)7fa

where we used that u is a good target-recalculation point. Thus, we may assume

A" > m/~f, which implies A" > (T'/T)(m/ f). Similarly to what we did above

for the lower bound we may show |S| = |4 — 2¢ — 64| > (1 — ¢)A’. Assuming

pn, T’ > (1 +)7 f, we obtain the contradiction

< D(S)+ B(J) < (24 2¢ — §)pyn,A'.

v/l v T/ ') US
(fi B~ (1T5)7 T % > 7 2 Q) > (1=t = (1407 /1 PolS

26

The first two inequalities have been discussed above. For the third one, note that
since C € S, by Lemma 7 there is a block computed by an honest party among
the first and the last £+ 2A rounds of the epoch; the inequality follows by Chain
Growth. The next one follows from Definition 7 (|S| < s due to Lemma 9) and
s0 n(S) > n,|S|/v. The contradiction is a consequence of Condition C2 and the
bound on |S|. O

Lemma 12. In a typical and hot-hand execution and a (7, s)-respecting envi-

t
ronmen GOoODROUNDS(r — 1) == GOODROUNDS(7).

Proof. Consider any C € S, and let u be its last recalculation point before r
and T the associated target. Note that if r is a recalculation point, it follows
directly by Lemma 11 that it is good. Otherwise, we need to show that f/27? <
pn, T < (1 + 8)v2f. By Lemma 11, f/2y < pn,T < (1 + 6)vf. By Lemma 9,
ny/v < n, < yn,. Combining these two bounds we obtain the desired inequality.

|

Theorem 3. Consider a typical and hot-hand exzecution in a (7, 2(1+8)y?*m/ f)-
respecting environment. If the Conditions C1, C2, and C3 are satisfied, then all
predicates of Definition 5 hold.

Proof. We only need to verify that the predicates hold for the first £ + 2A
rounds, assuming they hold at the first round. Note that if no epoch has been
completed, all honest parties query for target Ty and are at most yng. Thus,
we only need to verify DURATION(Z 4+ 2A). The lower bound of Lemma 9 holds
unless GOODROUNDS(r) fails for some r < £ + 2A, which does not happen by
Lemma 12. a

4.7 Common Prefix and Chain Quality

Theorem 4 (Common Prefix). For a typical and hot-hand execution in a
(7, (14 8)v2>m/ f)-respecting environment, the common-prefiz property holds for
parameter €2m.

Proof. Suppose common prefix fails for two chains C; and Cy at rounds r; < rs.
It is not hard to see that in such a case there was a round r < ry and two
chains C and C’ in S,, such that each had at least k blocks after head(C N C’).
By Lemmas 9 and 8, at least €2m/2 belong to one epoch. In view of Lemma 8,
it suffices to show that that these were computed in at least £ + 2A rounds.
Let T be the target of these blocks and suppose the honest parties query the
oracle for target 7' during a set of rounds S of size ¢ + 2A. By Condition C1,
|S| < €2m/16(1 + 6)v*f. Furthermore, by Theorem 3, pn, T < (1 + 6)yf holds
for each r € S. Putting these together, the number of such blocks that the honest
parties computed are less than

T-D(S)< (1+e¢) anrT < (14 €)e?m/16.
res

27

By Lemma 2 the adversary contributed less than (1 + €)e>m/16(1 + &) blocks,
for a total of less than €2m/2. O

Theorem 5 (Chain Quality). For a typical and hot-hand execution in a (v, (1+
8)y2m/ f)-respecting environment, the chain-quality property holds with param-
eters £ +2A and = § — 3e.

Proof. Let us denote by B; the i-th block of C so that C = Bj ... Bjey(c) and
consider K consecutive blocks B,,...,B,. Define K’ as the least number of
consecutive blocks By, ..., B, that include the K given ones (i.e., v’ < u and
v < v') and have the properties (1) that the block B, was computed by an
honest party at some round r or is Bj in case such block does not exist (r = 0),
and (2) that there exists a round 7’ such that B; ... B, € S,s. Denote by d’ the
total difficulty of these K’ blocks. Define U = [r..r'], S = [r + A.r/ — A], and
J the adversarial queries in U starting with the first to obtain one of the K’
blocks. Let 2 denote the total difficulty of all the blocks from honest parties that
are included in the K blocks and—towards a contradiction—assume x < ud'. In
a typical execution, all the K’ blocks {B; : v’ < j < v} have been computed in
U. But then we have the following contradiction to Lemma 2(c).

A(J) zd —z> (1= p)d = (1 - p)Q(S) = (1 -6+ 36)Q(S).

The first two inequalities follow from the definitions of x and d’ and the assumed
relation between them. It is not hard to see that the last inequality follows from
Chain-Growth Lemma. Finally, to verify that this is indeed a contradiction, note
that if U > (1 + 0)y?>m/f we may use Lemma 7 to partition U appropriately
(using blocks computed by honest parties as pivot points) and apply Lemma 2(c)
to each part. This is valid, since a block computed by an honest party provides
both properties (1) and (2) required for K’. O

4.8 Nakamoto Consensus: Consistency and Liveness

For parameters that satisfy Conditions C1 and C2, we can show that a typi-
cal and hot-hand execution in a (v, (1 + §)y?m/ f)-respecting environment en-
joys Consistency and Liveness. Their proofs follow along the lines of previous
work, such as [13,24, 12]. In particular, Consistency will follow directly from the
Common-Prefix property, that we show to hold in the above circumstances.

Theorem 6 (Consistency). For a typical and hot-hand execution in a (7, (1+
8)y2m/ f)-respecting environment, Consistency is satisfied by setting the settled
transactions to be those reported more than em blocks deep.

Theorem 7 (Liveness). For a typical and hot-hand execution in a (v, (1 +
8)v2m/ f)-respecting environment, Liveness is satisfied for depth €*m with wait-
time (4% 4+ 1)e*m/f.

Proof. We claim that the chain C of any honest party has at least ¢2m blocks
that where computed in the last 4¢272m /(1 — 2¢) f + 4A rounds. Indeed, C must

28

have a segment that lies in a single epoch—say of target T—and was computed
in a set U of at least 2e2y?m /(1 —2¢) f +2A consecutive rounds. If S is its subset
without the first and last A rounds, by Chain-Growth Lemma 1, the length of
this segment is at least

(1=29f1] _ 2,

T-Q(S)> (-9~ (L +a)f]2 Y pn T > S

res

Furthermore, if a transaction tx is included in any block computed by an honest
party for the first £ + 2A rounds, by Lemma 7, the chain C of any honest party

contains tx in a block B. The total wait-time amounts to
4 2.2 2 4 2.2

e’ym_ em‘_i_ efym‘s(472+1).
(1-2¢)f — 2140 f (1—2¢f

2
{4+ 6A + %

References

1. L. Addario-Berry and B. A. Reed. Ballot Theorems, Old and New, pages 9-35.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

2. Adam Back. Hashcash. http://www.cypherspace.org/hashcash, 1997.

3. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Dynamic ad hoc clock synchronization. In Anne Canteaut and Frangois-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - pages
8399—-428. Springer, 2021.

4. Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143-202, 2000.

5. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
http://eprint.iacr.org/2000,/067.

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 4/2nd Annual Symposium on Foundations of Computer Science, FOCS
2001, pages 186-145. IEEE Computer Society, 2001.

7. Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins.
In Ligatti et al. [20], pages 859-878.

8. Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, New York, 2009.

9. Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288-323, 1988.

10. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes in Computer
Science, pages 139-147. Springer, 1992.

11. Juan A. Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain
era. In Stanislaw Jarecki, editor, Topics in Cryptology - CT-RSA 2020 - pages
28/4-318. Springer, 2020.

12. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone pro-
tocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - pages 281-310. Springer, 2015.

29

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - pages 291-323. Springer, 2017.
Peter Gazi, Aggelos Kiayias, and Alexander Russell. Tight consistency bounds for
bitcoin. In Ligatti et al. [20], pages 819-838.

Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure
against connection depletion attacks. In NDSS. The Internet Society, 1999.
Jonathan Katz, Ueli Maurer, Bjéorn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Amit Sahai, editor, Theory of Cryptography
- 10th Theory of Cryptography Conference, TCC 2013, pages 477-498. 20183.
Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain
protocols. TACR Cryptology ePrint Archive, 2015:1019, 2015.

Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to an-
alyze blockchain consistency. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pages 729-744. ACM, 2018.
Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, 1982.

Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors. CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security, Vir-
tual Event, USA, November 9-13, 2020. ACM, 2020.

Colin McDiarmid. Probabilistic Methods for Algorithmic Discrete Mathematics,
chapter Concentration, pages 195-248. Springer 1998.

Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

Satoshi Nakamoto. Bitcoin open source implementation of p2p currency.
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source, 2009.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - pages 643-673, 2017.

Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228-234, 1980.

Ling Ren. Analysis of nakamoto consensus. TACR Cryptology ePrint Archive,
2019:943, 2019.

R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA, 1996.

Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Comput. Surv., 22(4):299-319, 1990.

J.M. Steele and Mathematical Association of America. The Cauchy-Schwarz Mas-
ter Class: An Introduction to the Art of Mathematical Inequalities. MAA problem
books series. Cambridge University Press, 2004.

Lutz Warnke. On the method of typical bounded differences. Combinatorics,
Probability and Computing, 25(2):269-299, 2016.

30

A Mathematical Facts

All the following definitions and statements assume finite probability spaces and
random variables with finite means.

Definition 10. /8, Definition 5.3] A sequence of random variables (Xo, X1,...)
is a martingale with respect to the sequence (Yy,Y1,...), if, for alln >0, X,, is
determined by Yy, ..., Y, and E[X,11|Y0, ..., Y] = X,,.

The following is closer to Theorem 3.15 in [21], but see also Theorems 8.1
and 8.2 in [8].

Theorem 8. Let (Xo,X1,...) be a martingale with respect to the sequence
(Yo, Y1,...). Suppose an event G implies

X — X1 b (forallk) and V =73, var[X, — Xp_1|Y1,..., Y] <o,

Then, for non-negative n and t,

2
Pr[Xn > Xo+tA G] < exp{—m}.

Theorem 9. [30, Theorem 1.6] Let X = (X1,...,XnN) be a family of indepen-
dent random variables with X; taking values in a set A; and let I' = HjE[N} I;
where I'; € Aj. Assume there are numbers (c;);en) so that f : Hje[N] A; = R
satisfies the following. Whenever x,x’ € HjE[N] I'; differ only in the j-th coor-
dinate and x,x' € I we have |f(z) — f(2')| < ¢; and |f(z) — f(2’)] < d for all
r, 7 € HjE[N] Aj that differ in at least one coordinate. Then, for allt >0,

22
e G

The following Cauchy-Schwarz converse (see [29]) will be of use.

Pr[f(z) < BIf(X)] —t — dPr[X ¢ | <exp{— }+Prx ¢ 1)

Theorem 10. For all non-negative real numbers ag, by, k =1,2,...,n that sat-
isfy m < ay /by < M for some constants 0 < m < M < oo,

where A = (m+ M)/2 and G = vVmM.

Theorem 11 (Theorem 2 in [1]). Suppose that X1, ..., X,, are integer-valued,
independent, and identically distributed random wvariables with mazrimum value
1. For1<i<mn,let S; = X1+ - -+ X;. Then, for any integer 0 < k < n,

PrlS; > 0 for alli = 1,2,....n|S, = k] = S

31

Theorem 12 (Theorem 3 in [1]). Let X1, X5, ... be an infinite sequence of
iid integer random variables with mean p > 0 and mazimum value 1 and for any
i>11letS;=X1+ -+ X;. Then

Pr[S; >0 forn=1,2,...] = p.

Theorem 13. Let ay,...,a, and by,...,b, be nonnegative real numbers such
that ay > --- > a, and

Qr+--F+a,>b.+---+b, forallr=1,...,n.
Let f(x) be an increasing concave function. Then

flay) + -+ flan) = f(br) + -+ f(bn).

B Proof of (All Executions are Typical) Theorem 1 and
the Related Lemma 2

Proof (of Theorem 1). Since the length L of the execution is fixed we will prove
the stated bound for a fixed set of consecutive rounds S—or, with respect to the
adversary, a fixed set of consecutive queries J—and then apply a union bound
over all such sets in the length of the execution. Furthermore, we may assume
|S| < s. This is because ¢ < s/2 and we may partition S in parts such that each
part has size between ¢ and s. We then sum over all parts to obtain the desired
bound. Let us also fix an execution Ej just before the beginning of S (or .J). We
will prove that the statements fail with exponentially small probability for an
arbitrary Fy. Note that Ey determines the number of parties ny and ty at the
beginning of S (or .J) and the target T'(J) associated with the first query in J.

For each round i € S, define a Boolean random variable F; equal to 1 exactly
when all n; hash values that were returned to the queries of the honest parties
were above min{T" : f(T,n;) > (1 +8)y2f}; define Z; = Y; - Fjp1-- Fiya_1.
Let G denote the event that the rounds in S are good. Given G, for any i € S,
(F; =1) = (D; =0) and so Q; > Z;. Thus, for any d,

Pr[G/\ > @i Sd} gPr[GA >z gd],
i€[k] i€[k]

and we may focus on the term on the right-hand side. Identify S with {1,...,|S|}
and partition it with sets of the form S; = {j,j + A,j +24,...} for j €
{0,1,..., A —1}. We will show that, for each part S,

Pr[GAY Zi< (L=l = (L+0)2f12p Y ni| < e
i€s; i€,
Let us fix such a set S; = {s1,52,...,5,}, with v > [|S|/A], and define the
event Gy as the conjunction of the events G and t = ¢(1 — 292 f)?pn(S;). Note

32

that n(S;) < L and so ¢t ranges over a discrete set of size at most L and we can
afford a union bound over it. Thus, it is sufficient to show that for any such ¢,

PrlGA Y Zi< L= (1400212 Y m—t] e
i€S; i€S;
To that end, consider the sequence of random variables
Xo=0; Xp=» Zs— Y E[Z|E, 1], ke]
i€[k] 1€[k]
This is a martingale with respect to the sequence &, _1(& = Ey),...,Es,-1,E,
because (recalling basic properties of conditional expectation [21]),

E[Xk|gsk—1] = E[Z&k - E[Zsklgsk—lngsk—l] + E[Xk’—1|£sk—1] = Xk’—l'

Specifically, the above follows from linearity of conditional expectation and the
fact that X;_; is a deterministic function of &, ,ya_1 = &, —1. Furthermore,
given an execution I satisfying Gy,

€Y E[Zi|&, 1 =Eq 1] Z €Y [1— (1407 pni =t.

1€S; i€S;

Thus, our goal is to show Pr[—X, >t A G| < e,

We now provide the details relevant to Theorem 8. Consider an execution
E satisfying G, and let B denote the event &, 1 = E;,_1. Note that Zszk =
YSZk -Fg, 41+ Fs,+a—1 and all these random variables are independent given B.
Since Xy, — X1 = Z;, — E[Z,, |E;,—1] and

. , 3
7. —E[Z,,|B| P, o opndS;) o apn(Si) 27°t
(6)
we see that the event G implies Xj,— X1 < b. Withrespect toV =), var[X;—
Xpi—1]€s,—1] < 324 E[Z2 |Es, ~1], using the independence of the random variables
and Proposition 1,

3 B2 B < -(ap)at 3 et MU DRI s e

min — 2
kelv] kel s T3 F1(27?) k€v]
Applying Proposition 2 on this bound, we see that event G; implies
21— (1407214 ’ Calid
V< : .) < : . (7
= 715;] an‘k = 2122y, (7)

kev]

In view of these bounds (note that bt < ev), by Theorem 8,

t* Ef[L— (L4224 _
PI‘ —XV Z t/\G S exp ST e\ S exp{_ - } S e
[t] { 20(1 + 5)} Ap3(1+ %)

33

i

def

T pns TR T png TS T vf/(297) T e(1-292) A fv

where the last inequality follows from the value of ¢ (recall that v > £/A and
equation (3)).

For the bound on D(S) it will be convenient to work per query. Let .J denote
the queries in S, v = |J|, and Z; the difficulty of any block obtained from query
i € J. Define the martingale sequence

Xo=0; X = Z Z; + Z E[ZZ‘|5¢_1], ke [l/]
i€[k] i€[k]

With similar calculations as above we obtain that G; (with ¢ = epr) implies

273t 4o 2732 .
ZT Y ger b and V < i =
ef1S]

X, — X1 < —_— =
TS =efs

Applying Theorem 8 we obtain

et
Pr(X, >tAG] < — L <e M
r[X, > t]—eXp{ 2b(1+§)}_e

We next focus on part (b). For each j € J, let A; be equal to the difficulty of
the block obtained with the j-th query as long as the target was at least T'(J)/7;
thus, A(J) =3_,c; Aj. If |[J| = v, identify J with [v] and define the martingale

Xo=0; Xp= > A;j— > E[4]1], ke[
JEK] JEK]

For all k € [v] we have X}, — Xy—1 < 7/T(J), var[Xy, — Xg_1|Ek—1] < p7/T(J),
and E[A4;|&;_1] < p. We may apply Theorem 8 with b = 7/T'(J), v = bpr < bt/e,
and ¢ = max{epv, 2(1 + L)bA}. We obtain

i -2

jeJ

For part (c), as in [13], it can be shown that an insertion or a copy imply a
collision, which can be shown to occur with probability at most (5)27*. Also,
since there can be at most L predicted blocks, the probability a prediction occurs
is at most L227". O

Proof (of Lemma 2). (a) The middle inequality follows directly from the defi-
nition of the random variables. For the other two, let us assume first |U| < s.
With respect to the lower bound on Q(S) we have

] < (1=0)n(U) < (1-8)(1+ #)n(S) <-9(1+ %)n(S’).

The second inequality follows from |U| < s and Proposition 2; the third from
0 > 4A+%/f, obtained from Equation (3). On the other hand, since |S| > ¢

34

we may use Definition 7(a) to obtain Q(S) > (1 — 2¢)pn(S), which suffices for
€ < 4d/16.
With respect to the upper bound on D(U) we obtain similarly that

D) < (1+epn(U) < (1+) (1+ g)pn(S) < (1+49Q(9).

For the case |U| > s, we partition the sets S and U into Si,...,S,, and
Ui,...,U,, respectively, as follows. We consider any partition such that each
part is at most s and at least £ and S; = U; for ¢ = 2,3,...,m (this is always
possible because s = 7m/ f > £/2, by Condition C1). The above derivations hold
for each part and summing over all of them gives the desired inequalities.

(b) Either ep|J| > T7a(J) and Definition 7 applies directly, or p|J| < Ta(J)/e
and by Equation (3) and Condition C1,

A

2 €
T(J)A(J)<€7(1+6)<1+*>7A<ﬁ_m6 m.

3

(c) In a (v, s)-respecting environment, yn(S) > n,|S|. Incorporating this in
Definition 7 we obtain the first bound. For the second one, Using € < 1/6,

Py S| - e(1—2e)f¢

(1= 29pn($) 2 e(1 =297 2 2 Sy

Ta(J).

As in (a), p|J| < (1 — 8+ €2/2)pn(S). We obtain A(J) < (1 —d + €)pn(S) and
use Condition C2.

(d) Suppose the parties query the oracle for target T during a set of rounds S
of size /+2A and so we may bound its size by the right-hand side of Condition C1.
Furthermore, since the blocks belong to a good chain, pn, T < (1 + §)y2f for
each r € S. Putting these together, the number of such blocks that the honest
parties computed are less than

-’ 11—

) < —_— 7 . < ——F .
T-D($) < (140) pmT < (L) a7 €m < goa g e'm

res

Adding the contribution of the adversary and using the bound in part (b), we
obtain the desired bound. O

C The Bitcoin Backbone Protocol with Variable
Difficulty (cont’d)

In this section we give a a more detailed description of the Bitcoin backbone
protocol with chains of variable difficulty. The presentation is based on the de-
scription in [12].

35

C.1 The protocol

As in [12] in our description oof the backbone protocol we intentionally avoid
specifying the type of values/content that parties try to insert in the chain, the
type of chain validation they perform (beyond checking for its structural prop-
erties with respect to the hash functions G(-), H(*)), and the way they interpret
the chain. These checks and operations are handled by the external functions
V(-),I(-) and R(-) (the content validation function, the input contribution func-
tion and the chain reading function, resp.) which are specified by the application
that runs “on top” of the backbone protocol.

The Bitcoin backbone protocol in the dynamic setting is specified as Algo-
rithm 4 and depends on three sub-procedures.

Chain validation. The validate algorithm performs a validation of the struc-
tural properties of a given chain C. It is given as input the value g, as well as
hash functions H(-), G(+). It is parameterized by the content validation predicate
predicate V() as well as by D(-), the target calculation function (see Section 3).
For each block of the chain, the algorithm checks that the proof of work is
properly solved (with a target that is suitable as determined by the target cal-
culation function), and that the counter ctr does not exceed ¢. Furthermore it
collects the inputs from all blocks, x¢, and tests them via the predicate V(x¢);
note that V(e) = true. Chains that fail these validation procedure are rejected.
(Algorithm 1.)

36

Algorithm 1 The chain validation predicate, parameterized by g, D, the hash
functions G(+), H(-), and the input validation predicate V (-). The input is chain

1: function validate(rnow, C)

2 valid < V(xc)

3 if valid = True A (C # €) then > C is non-empty and meaningful w.r.t. V(-)

4: TR 4 Tnow + Afwd

5: rL, <0

6: len < |C|

7 (r',st' 2’ ctr’) < (0, L,” genesis”, 1)

8: 141

9: T < Tinitial
10: while (i < len) A valid do
11: (r,st,z, ctr) head(Cl*e"—%) > Get the i-th block; note C[® = C
12: Storev < H(ctr',G(r', st’, z")) > Calculate the hash of previous block
13: if validblock ((r, st,z,ctr)) A (stprey = 8t) A (1, < 7 < TR) then
14: (r',st', 2’ ctr') < {r, st,z,ctr) > Retain current block
15: timeseq < (r)||[timeseq > Prepend timestamp
16: if |timeseq| > kmea then > We have enough timestamps for median
17: timeseq < timeseq!! > Remove the last element
18: end if
19: r. + max{r., median(timeseq) + 1} > Advance left time bound
20: else
21: valid < False > Blockchain is not valid
22: end if
23: T < D(rorien—i) > Calculate next target
24: 141+1
25: end while
26: end if
27: return valid

28: end function

Note that in the Bitcoin implementation it holds that Agfyq = 2 hours and
kmed =11

Chain comparison. The objective of the second algorithm, called maxvalid,
is to find the “best possible” chain when given a set of chains. The algorithm
is straighrward and is parameterized by a max(:) function that applies some
ordering in the space of chains. The most important aspect is the chains’ diffi-
culty in which case max(Cy,Cz) will return the most difficult of the two. In case
diff (C;) = diff(C2), some other characteristic can be used to break the tie. In our
case, max(+,-) will always return the first operand to reflect the fact that parties
adopt the first chain they obtain from the network. (Algorithm 2.)

37

Algorithm 2 The function that finds the “best” chain, parameterized by func-
tion max(-). The input is {Cy,...,Cx}.

1: function maxvalid(rnow,C1, - . ., Ck)
2: temp < ¢

3: for i =1 to k do

4: if validate(rmow, C;) then

temp < max(C, temp)
end if
end for
return temp
end function

© XD

Proof of work. The third algorithm, called pow, is the proof of work-finding
procedure. It takes as input a chain and attempts to extend it via solving a proof
of work. This algorithm is parameterized by two hash functions H(-), G(-) as well
as the parameter g. Moreover, the algorithm calls the target calculation function
D(-) om prder to determine the value T' that will be used for the proof of work.
The procedure, given a chain C and a value x to be inserted in the chain, hashes
these values to obtain /A and initializes a counter ctr. Subsequently, it increments
ctr and checks to see whether H(ctr,h) < T in case a suitable ctr is found then
the algorithm succeeds in solving the POW and extends chain C by one block.
(Algorithm 3.)

Algorithm 3 Proof of work single step based on hash functions H(-), G(-) and
target calculation function D(-).

1: function pow(7now, z,C)
2: if C = € then > Determine proof of work instance.
prev < 0
ctr <0
else
(r',prev’,z’, ctr’) + head(C)
prev < H(ctr',G(r',prev’, "))
end if
9: B+«
10: T < D(re) > Calculate target for next block based on timestamps.
11: h « G(r,prev, z)
12: if (H(ctr,h) <T) then > This H(-) invocation is subject to 1 query/round.

13: B « (r,prev,z, ctr)

14: end if

15: ctr < ctr +1 mod 232

16: C+ CB > Chain is extended, if B # ¢

17: return C
18: end function

38

The backbone protocol. The core of the protocol is similar to that of [13].
We recall some of the main functions as well as point to the new elements we
have added compared to previous abstractions. Parties always check the active
flag to make sure they detect they have missed one or more rounds. In case
the active flag is false, they broadcast a special message ‘Join’ (that requests
the most recent version of the blockchain from other other parties) and enter
into bootstrapping mode which lasts for a certain period of time denoted by
Apootstr- To respond to such request, when online parties receive the special
request message in their RECEIVE() tape they broadcast their chain. The input
contribution function I(-) and the chain reading function R(-) are applied to the
values stored in the chain; we are not concerned with the way these functions
are defined.

As in past work, [12,13] the input tape of a party contains two types of
symbols, READ and (INSERT, value); other inputs are ignored. A READ results
to the party applying function R(-) to its current chain and writing the result
onto the output tape OUTPUT(), while a (INSERT, value) symbol is taken into
account by the I(-) function when it determines the contribution of the party in
extending its chain.

One of the novel elements in the current treatment is the fact that the current
time is always determined by querying the clock functionality, which allows the
adversary to apply a drift on a party’s clock up to the @ bound.

The pseudocode of the backbone protocol is presented in Algorithm 4.

39

Algorithm 4 The Bitcoin backbone protocol in the dynamic setting at round
“round” on local state (st,C) parameterized by the input contribution function
I(-) and the chain reading function R(-). The “active” flag is False if and only
if the party was inactive in the previous round. bootstrapping is initially False.

1: currenttime < RequestTime > request time from the clock functionality
2: bootstrapping < bootstrapping A active
3: if active = True A —bootstrapping then > Ledger maintenance mode
4: DIFrUSE(Ready)
5: round < currenttime
6: C + maxvalid(round, C, all chains C’ found in RECEIVE())
T: round < max{round, 1 + median of C last 2kmea — 1 blocks}
8: if INPUT() contains READ then
9: write R(x¢) to OUTPUT()
10: end if
11: (st,x) « I(st,C,round, INPUT(), RECEIVE())
12: Chew pow(round,x,é)
13: if (C # Chew) V (Join € RECEIVE()) then
14: C < Chew
15: DIFrUSE(C) > chain is diffused when updated or when someone joins.
16: end if
17: DIFFUSE(RoundComplete)
18: else > Bootstrapping mode
19: active « True
20: if bootstrapping = True then > Node is in the process of bootstrapping
21: timelapsed < timelapsed + max{currenttime — timelapsed, 0}
22: else > Node just woke up and needs to bootstrap
23: bootstrapping < True
24: timelapsed < 0
25: end if
26: if timelapsed > Apootst: then
27: bootstrapping < False > Node is ready to engage
28: else
29: DirrusE(Join, RoundComplete) > Node is asking for blocks to synchronize
30: end if
31: end if

40

