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Abstract—One of the most significant challenges in the design
of blockchain protocols is increasing their transaction-processing
throughput. In this work we put forth for the first time a formal
execution model that enables to express transaction throughput
while supporting formal security arguments regarding persis-
tence and liveness. We then present a protocol in the proof-of-
stake setting achieving near-optimal throughput under adaptive
active corruption of any minority of the stake.

I. INTRODUCTION

Permissionless blockchain protocols inspired by Bit-
coin [28] exhibit an inherent speed-security trade-off that de-
pends on the latency of the communication network. This was
first formally illustrated for the proof-of-work (PoW) setting
in [18] by expressing how block production per round of
message-passing must be relatively small for security theorems
to be meaningful. This point was further refined in [29] where
block production per unit of time was restricted with respect
to 1/∆, where ∆ is the network delay, while for arbitrary
delays a generic attack was formulated. A conclusion of these
results, that also carries over to Nakamoto-style proof-of-stake
(PoS) protocols, is that in order to achieve safety, blockchain
protocols must be operated at a relatively slow pace with
respect to network latency.

This issue severely impacts the throughput of conventional
protocols since long periods of silence between blocks result
in an underutilization of the available network bandwidth.

Later efforts to improve throughput of permissionless pro-
tocols focused mostly on PoW-based ledgers, and lead to a
number of advances in protocol design that adopted one of
two possible approaches. The first one delegates block creation
to a temporary leader or committee, thus providing better
throughput at least in optimistic environments – exemplified
by works such as Bitcoin-NG [14], Hybrid Consensus [30],
Thunderella [32], or Mir-BFT[39]. The second approach rede-
fines the underlying blockchain protocol by deviating from the
original single-chain structure – exemplified by “block-tree” or
“DAG” protocol proposals such as GHOST [35], Spectre [34],
Phantom [37], GraphChain [7], Tangle [33], Conflux [24], and
Swirlds [4].

Despite the above exciting development, there are still clear
gaps in the current state of the art. First, we lack a detailed
formal execution model capable of capturing the theoretical
throughput of blockchain protocols. Second, most of the above
work focuses on the PoW paradigm, with the promising

alternative approach of PoS being left behind. This paper
addresses both these deficiencies.

Our results. We propose a new formal model that captures a
concept of throughput for distributed ledger protocols. This is
achieved by a novel, fine-grained network-diffusion function-
ality that reflects network communication with greater preci-
sion compared to previous work, tailored towards capturing
protocol throughput. Based on this model, we propose a PoS
protocol provably achieving both security and (near) optimal
throughput against any adaptive active adversary controlling a
minority of stake in the system.

Network and throughput modeling. Our network functional-
ity abstracts the uplink, transit queue as well as the downlink
of each single party in the network. Whenever a message is
transmitted, it is placed via a party’s uplink into the transit
queue for all recipients. The uplink capacity of each party is
by definition one message per unit of time (we use the term
“slot”), and messages are restricted to a fixed packet length and
as such may be insufficient to carry all the transactions that are
available in a party’s pool of pending transactions. The transit
queue for each recipient can be arbitrarily manipulated by the
adversary by placing messages into a party’s downlink and
making them become available to the party, subject to an upper
bound on the number of messages that may be accessed from
the downlink per slot. Note that we do not put any restriction
on maximum delivery time into the model, rather condition
our security statements on such a bound.

Using this network abstraction, we introduce the following
notion for block-based distributed-ledger protocol throughput:
it is the cardinality of a largest set of disjoint (with respect
to the transactions they carry) honest blocks added into the
stable ledger divided by the number of slots – during any slot
interval of some minimal length within the protocol execution.
A protocol is defined to achieve (near) throughput-optimality
if it can be parameterized such that this ratio converges to the
fraction of stake controlled by the honest participants.1

Throughput-optimal PoS protocol. As a basis for our con-
struction, we consider a Nakamoto-style PoS protocol with
suboptimal throughput, such as [20], [6], [12], [2]. In a
nutshell, we execute m instances of it in parallel, producing
m chains while any given transaction is eligible to be added

1For simplicity, we will drop the term “near” in the sequel.



to exactly one of the chains, e.g., determined by the hash of
the transaction.

The staking lottery (deciding eligibility to append new
blocks) is evaluated independently for each of these chains,
but for each chain is based on the joint stake distribution
comprising all the stake in the system. At any given moment,
the contents of the m chains in the view of an honest party
can be organized into a single ledger state by ordering the
transactions according to the index of the block and then the
rank of the blockchain it belongs to (from 1 to m).

So far, the sketched extension gives the same security
guarantees as the underlying single-chain protocol, and turns
out to already achieve optimal throughput in presence of a
fail-stop adversary who can adaptively shut down parties but
cannot make them misbehave arbitrarily. However, achieving
throughput optimality against fully adversarial behavior poses
additional challenges: the adversary might for example apply
a variant of the selfish-mining attack [15] to unbalance the
proportion of honest blocks in the ledger, and only create
empty blocks to harm throughput. To mitigate such problems,
we borrow an idea from the PoW space and adapt it to the PoS
setting: specifically we adapt the Conflux block-inclusion rule
from [24], based on the inclusive-blockchain idea from [23]:
all blocks pruned by the chain-selection rule are re-included
to the ledger, ensuring that no honest blocks ever get lost.

Note the following difference to standard DAG protocols
from the literature: those protocols improve throughput by
increasing the block growth while all blocks are added to
the same block graph and forks are frequent. Our protocol
maintains separate graphs at low growth and forks are as rare
as in the underlying slow protocol, while throughput optimality
is achieved by parallelism. This separation of graphs gives the
protocol more structure and makes it easier to analyze.

We make our construction explicit by applying the above
technique to the PoS protocol Ouroboros Praos [12]. This
protocol provides security against fully adaptive corruptions,
which is inherited by our construction.

We formally prove both the security and the throughput
guarantees of the construction. Note that the latter would be
impossible (for any protocol!) without our formal throughput
model, which we see as an important independent contribution
that we hope to prove useful for analyzing security of other
protocols in the future.

Analysis vs. simulation. It is often debated whether through-
put behavior should be proven experimentally or analytically.
We consider both alternatives justified with their advantages
over the other.

The experimental approach makes use of real networks but
must typically be based on simplified assumptions over the
environment, and in particular, does not capture worst-case
adversarial behavior.

In contrast, the analytical approach must be based on a
simplified (idealized) network model but gives provable guar-
antees under worst-case adversarial behavior in this model. In
fact, this paper analytically proves that asymptotic throughput

optimality is achievable by PoS protocols – a property that
would be hard to demonstrate experimentally.

Related work. The hybrid approach that decouples (fast)
transaction processing from (slow) blockchain protocol main-
tenance is intrinsic in the proposal by Eyal et al. [14] (Bitcoin-
NG), however this protocol cannot withstand adaptive corrup-
tion. Generalizing the chain structure of [28] to more general
graphs was first considered by Sompolinsky et al. [36] and
Lerner [22]. The former generalization (GHOST) still extracts
a single chain to represent the ledger but the blocks of the
complete block tree (including all forks) remain to contribute
to this selection process to preserve the PoW of the blocks
outside the main chain. The latter suggests to organize the
blocks in a directed acyclic graph (DAG) where a single block
references multiple previous blocks. The first DAG protocols
involving some type of formal analysis were proposed by
Boyen et al. [7], Sompolinsky et al. [34], [37], and Bentov et
al. [5]. However, these proposals only involve qualitative ar-
guments without giving a full formal model for arguing about
throughput. Other examples of DAG protocols are described
by Popov [33] (IOTA) and Baird [4] (Hashgraph) — both not
thoroughly analyzed in the Byzantine permissionless setting.
In [24], Li et al. proposed Conflux, the first DAG protocol that
directly allows for a detailed analysis. As their protocol is an
extension of the GHOST rule, maximal respective throughput
is limited by the conditions under which the GHOST protocol
can safely operate.

Our work first appeared as part of [16]. While combining
multiple chains in parallel has been examined before in [25],
[21], [17], and concurrently in [41], none of them demon-
strated throughput optimality. Similarly, the PoS protocol
in [39] delegates block creation to a PBFT committee wherein
the participants propose blocks in parallel; achieving through-
put superiority over the other committee-based protocols as
demonstrated by experimental results. Note that involving a
committee inherently limits robustness to less than one third
of actively corrupted stake – while our solution tolerates any
minority of actively corrupted stake.

Concurrently to our work, Bagaria et al. [3] published a
throughput-optimal protocol using the input-endorsers [20] or
fruits [31] technique originating in [18] – but restricted to the
PoW setting and analyzed in a simpler network model. They
achieve throughput-optimality under active corruption while
our initial protocol, though actively secure, only achieved
throughput-optimality under fail-stop corruption. Throughput-
optimality under active corruption was added to our protocol
later.

In the realm of PoS, Algorand [26] improves over the
latency of eventual-consensus protocols, but does not address
throughput. Thunderella [32] provides improved throughput
under optimistic conditions (at least 3/4 of honest stake and
a designated party is honest), but downgrades to single-chain
throughput otherwise, e.g. after a single adaptive corruption
of the designated party.



II. PRELIMINARIES

Basic Notation. For n ∈ N we use the notation [n] to refer
to the set {1, . . . , n}. For brevity, we often write {xi}ni=1

and (xi)
n
i=1 to denote the set {x1, . . . , xn} and the tuple

(x1, . . . , xn), respectively.
Execution Model. We divide time into discrete units called
slots. Parties are equipped with (roughly) synchronized clocks
that indicate the current slot: we assume that any clock drift is
subsumed in the slot length. Each slot is indexed by an integer
t ∈ {1, 2, . . .}. For an interval of slots I = [t1, t2] we denote
its length as |I| , t2 − t1 + 1.

We consider a UC-style [8] execution of a protocol Π,
involving an environment Z , a number of parties Pi, function-
alities that these parties can access while running the protocol
(such as the functionality Fdiff used for communication), and
an adversary A. All these entities are interactive algorithms.
The environment controls the execution by activating parties
via inputs it provides to them. The parties, unless corrupted,
respond to such activations by following the protocol Π and
invoking the available functionalities as needed. We denote
by Exec (Π,A,Z) the random variable containing the full
transcript of an execution of the protocol Π with adversary
A and environment Z .
Adaptive Byzantine Corruptions. The adversary influences
the protocol execution by interacting with the available func-
tionalities, and by corrupting parties. To corrupt a party, the
adversary has to first ask the environment Z for permission. If
the corruption is approved by Z (via a special message from
Z to A), the adversary corrupts Pi immediately. A corrupted
party Pi will relinquish its entire state to A; from this point
on, the adversary will be activated in place of the party Pi.
We call these Byzantine or active corruptions.
Semi-synchronous Communication. Our model allows
for semi-synchronous (sometimes called non-lock-step syn-
chronous) communication among honest parties, where mes-
sages are guaranteed to be delivered within ∆ slots. This is
formally captured by the functionality Fdiff that also models
bandwidth-restricted communication, we describe it in detail
in Section III as one of our main contributions. We do not
make restriction on maximum delivery time an explicit part of
Fdiff , we rather condition our security statements on maximum
observed delays. Note that the value ∆ is unknown to the
protocol itself.
Blockchains and Ledgers. A blockchain (or a chain) (denoted
e.g. C) is a sequence of blocks where each block is connected
to the previous one by containing its hash. The first block of a
chain C is called its genesis block and denoted by G. The last
block of C is denoted by head(C). By Cdk we denote C where
the last k blocks have been removed. We denote the extension
of a chain C by a block B as C′ = C ‖B. For simplicity, we
write B ∈ C iff C contains block B. By len(C) we denote the
number of blocks in C.

A ledger (denoted in bold-face, e.g., L) is a mechanism
for maintaining a sequence of transactions, often stored in
the form of a blockchain. We slightly abuse the language by

letting L (without further qualifiers) interchangeably refer to
the algorithms used to maintain the sequence, and all the views
of the participants of the state of these algorithms when being
executed. For example, the (existing) ledger Bitcoin consists
of the set of all transactions that ever took place in the Bitcoin
network, the current UTXO set, as well as the local views of
all the participants.

In contrast, we call a ledger state a concrete transaction
sequence tx1, tx2, . . . stored in the stable part of a ledger L,
typically as viewed by a particular party. Hence, in every
blockchain-based ledger L, every fixed chain C defines a
concrete ledger state by applying the interpretation rules given
as a part of the description of L (e.g., the ledger state is
obtained from the blockchain by dropping the last k blocks and
serializing the valid transactions in the remaining blocks). We
denote by LP[t] the ledger state of a ledger L as viewed by a
party P at the end of a time slot t. We say that a party P reports
a transaction tx as stable during time slot t iff tx ∈ LP[t].
By L̃P[t] we denote the ledger that additionally contains any
transactions that are valid but still pending according to the
view of party P. For any t,P, it holds that LP[t] � L̃P[t]
where � denotes the prefix relation.

Finally, we introduce a specific class of transaction-ledger
protocols that have the following structure: transactions are
grouped into blocks, and the stable ledger state is determined
by the protocol at any time t by selecting which of the
blocks seen so far are stable, ordering them according to
some protocol-specific rule, interpreting them as a sequence
of the transactions they contain, and sequentially removing
all transactions from this sequence that would not be valid
with respect to the remaining transactions that are preceding
them. We call such transaction ledger protocols block-based
and remark that almost all protocols considered in this paper
are block-based. Note that for a block-based ledger protocol L,
it is well-defined to treat a ledger state LP[t] as the sequence
of the stable blocks that form it, allowing for notational
shorthands such as for example |LP[t]| denoting the number
of stable blocks for P at time t, and B ∈ LP[t] to indicate
that B is a stable block at time t for a party P.

Recall the definitions of persistence and liveness of a robust
public transaction ledger adapted from the most recent version
of [18]:

Definition 1. A protocol Π implements a robust transaction
ledger (with respect to parameter u) iff it organizes the ledger
as a sequence of transactions by satisfying the following
properties:
Persistence. For any two honest parties P1,P2 and time slots

t1 ≤ t2, it holds that LP1 [t1] � L̃P2 [t2].
Liveness. If all honest parties in the system attempt to include

a transaction then, at any slot t after u slots (called the
liveness parameter), any honest party P, if queried, will
report tx ∈ LP[t].

When a ledger is implemented by a single blockchain, each
party P at time t holds a single chain C as its state. If we want
to make P and t explicit, we denote this chain as CP[t]. For



such blockchain-based ledger protocols, robustness is known
to be implied by the following blockchain properties:
Common Prefix (CP). A blockchain protocol achieves

common-prefix with parameter k ∈ N if for any pair
of honest parties P0,P1 and time slots t0, t1 such that
t0 ≤ t1, it holds that CP0 [t0]

dk � CP1 [t1].
Chain Growth (CG). A blockchain protocol achieves chain

growth with parameters τ ∈ R and s ∈ N if for any
honest party P, for slots t1, t2 such that t1 + s ≤ t2 ≤ t
the chain CP[t] contains at least τ ·s blocks from the time
interval (t1, t2].

Chain Quality (CQ). A blockchain protocol achieves chain
quality with parameters µ ∈ R and ` ∈ N if for any
honest party P and any time slot t, it holds that among
any ` consecutive blocks in CP[t] the ratio of adversarial
blocks is at most 1− µ.

III. MODELING BANDWIDTH LIMITATIONS

Our communication model is based on the model from [12],
but extends it to capture bandwidth limitations of the protocol
participants and the efficiency of the protocol in terms of
throughput. The network model is formally captured by the
“diffuse” functionality Fdiff given in Figure 1.

We start by fixing a block size b and defining a slot to be the
time interval in which a party can “push” a block of this size
to the network, given its bandwidth (we assume the bandwidth
limitations to be uniform for all parties).

We now allow parties to diffuse messages to all other parties
at the maximum rate of one block per slot. If a party attempts
to diffuse more than one block in a given slot, these blocks
are queued locally and sent one by one. After being sent,
the messages are delayed arbitrarily (and independently for
each recipient) by the adversary, and upon delivery they are
pushed into the recipient’s inbox queue, from which they
can be fetched by the recipient at the maximum speed of
µ ∈ N blocks per slot. Here µ is the bandwidth-asymmetry
parameter of our model. Unless stated otherwise, we consider
the symmetric case µ = 1.

The adversary is allowed to submit arbitrary additional mes-
sages for diffusion. These messages do not suffer from initial
queuing (we assume the adversary has an unlimited uplink),
but will queue on the recipients’ side. Importantly, also the
adversarial messages are sent to all participating parties – this
reflects the nature of peer-to-peer gossip protocols where even
adversarial messages, once entering the system, are propagated
to all parties. In line with the UC communication model we
also allow the adversary to send direct messages to parties,
but as parties can see that these messages were not received
via Fdiff , they drop them as no such messages are expected by
the protocol. This again reflects the behavior of peer-to-peer
gossip networks underlying permissionless protocols.

Of course, we need to put some restrictions on the adver-
sarial capability of delaying messages, as blockchain protocols
are known to be insecure in settings with unbounded delays,
cf. [29]. In any fixed execution transcript T (that implic-
itly specifies a protocol, an adversary, and an environment)

Fig. 1. Functionality Fdiff .

The functionality Fdiff is parameterized by µ ∈ N. It keeps rounds,
executing one round per slot. Fdiff interacts with the environment
Z , stakeholders P1, . . . ,Pn and an adversary A, working as
follows for each round:

1) Fdiff maintains three lists of messages for each party Pi that
participates: outboxi, delayedi and inboxi, and one message
list outboxA for the adversary; initially all empty. Each
outboxi and inboxi for i 6= A operate as queues, keeping
the messages in the order in which they were added.

2) In each round, for each party Pi at most one message is
marked as pending, and keeps this status until the round’s
end: If outboxi is non-empty at the beginning of the round
then the first message it contains is marked as pending,
otherwise it is the first message Pi submits for diffusion (see
Item 3) in this round.

3) Whenever activated, a party Pi is allowed to submit for
diffusion a sequence of messages of size up to b bits, each.
Each message is assigned a unique message identifier mid.
These messages are appended to outboxi in order of the
sequence.

4) When the adversary A is activated, it is allowed to:
• Read all lists delayedi and inboxi and all pending mes-

sages, with corresponding mid values.
• Create arbitrary messages and submit them for diffusion,

these messages are put into outboxA. This list is not a
queue, all messages in it are immediately considered to
be pending.

• For any j ∈ {1, . . . , n,A} and any pending message mid
still in outboxj , A can remove the corresponding message
M from outboxj and put it into delayedi for all i ∈ [n].

• For any party Pi, A can remove any message from the
list delayedi and push it to the queue inboxi.

5) At the end of each round, the functionality ensures that
every pending message still present in outboxj for j ∈
{1, . . . , n,A} is removed from outboxj and pushed into
delayedi for all i ∈ [n].

6) A party is once per round (if activated) allowed to pop at
most µ oldest messages from inboxi. These messages are
given to Pi and removed from inboxi.

and a message M with corresponding message identifier
mid diffused in T via the functionality Fdiff , we denote by
delayT (mid) the amount of slots that passed between M being
submitted for diffusion and being fetched from the inbox
by all its honest recipients (or the end of the execution,
whichever comes first), decreased by 1. Furthermore, we let
maxdelay(T ) , maxmid∈T delayT (mid), where the maximum
is taken over all message identifiers mid diffused by honest
parties in T .

Definition 2 (MaxDelay∆). For a protocol Π, an ad-
versary A, and an environment Z , we define the event
MaxDelay∆(Π,A,Z) (or just MaxDelay∆ for brevity) to be
the event that maxdelay(Exec (Π,A,Z)) ≤ ∆.

Looking ahead, our security analysis will provide meaning-
ful guarantees in adversarial settings where the probability of
the event ¬MaxDelay∆ remains negligible for some ∆ (which
may not be necessarily known explicitly to the participants).
Note that this for example excludes adversaries that would
try to attack the protocol by a DoS type of attack clogging
the network, as these network-level attacks are outside of the



scope of our model.
However, note that since our model bounds the downlink

throughput of the parties, some protocols may cause message
delays even when operating in a non-adversarial environment.
Definition 3 captures this; to present it we first need to
formalize such non-adversarial executions. For this, we denote
by A⊥ the dummy adversary that does not corrupt any parties,
and does not delay or inject any messages, i.e., the adversary
pushes pending outbox messages directly into the inboxi
of party Pi for all i. Now, a protocol is κ-bounded if its
operations do not cause any delay beyond κ when assuming
no (adversarial) propagation delays:

Definition 3 (κ-Boundedness). A protocol Π is (κ, ε)-bounded
if for the adversary A⊥ and for any environment Z we have
Pr[¬MaxDelayκ(Π,A,Z)] ≤ ε.

Finally, we describe how to quantify the throughput of a
block-based transaction ledger protocol in this model. Our
definition is akin to the standard definition of the chain growth
property, applied to a ledger instead of a single blockchain,
and restricting our counting to non-intersecting honest blocks.

Definition 4 (Productive blocks). A set of stable blocks gen-
erated by a block-based ledger protocol is called productive
iff they were all generated by honest parties (at the time of
block generation) and all blocks’ included transaction sets are
pairwise disjoint. The set is called productive with respect to
slot interval I iff its blocks were generated within the slot
interval I .

Definition 5 (Throughput (TP)). A block-based transaction-
ledger protocol achieves (θ, L0)-throughput for parameters
θ ∈ [0, 1] and L0 ∈ N iff for any honest party P, for any
L ≥ L0, and for any slots t1, t2 such that t1 +L ≤ t2 ≤ t, the
ledger LP[t] contains a set of at least θ · (t2 − t1) productive
blocks with respect to the slot interval (t1, t2].

Definition 5 captures “productive” growth of the stable
ledger as a fraction of the theoretical maximum growth of µ
blocks per slot. With an adversarial corruption of an (1−α)-
fraction of all stake, the best achievable throughput is for θ
to approach µ · α, and this is what we refer to as throughput
optimality.

As an illustration, we use our definitional framework to give
a quantitative assessment of several natural throughput-scaling
proposals in the following section.

IV. ASSESSING SOME THROUGHPUT-SCALING PROPOSALS

As a warm-up, we use our definitional framework to give a
quantitative assessment of several natural scaling proposals.
We mostly consider the PoW setting here as throughput
optimization has hardly been addressed in the PoS space yet,
and the respective ideas similarly apply to the PoS case.
The purpose is to familiarize the reader with our model and
illustrate its expressiveness, hence for simplicity this section
only provides informal claims without proofs and focuses on
throughput in the non-adversarial setting (with A⊥).

a) Plain Bitcoin: First, let us consider Bitcoin with
blocks of size b, i.e., such that a block can be submitted for dif-
fusion by a party in a single slot. In a typical Bitcoin execution
without adversarial interference, a successful miner of a block
B spends a single slot diffusing B, this block is then delivered
within ∆ slots to the future miner of the next block (along
with all other miners), and finally this miner spends d slots
mining for the successor of B. During these ∆ + d slots, the
“available bandwidth” is not used productively, contributing to
the rather unsatisfactory throughput of ≈ 1/(1 + ∆ + d) with
1� ∆� d. If a block is considered stable after k blocks are
mined on top of it, the expected confirmation time (latency)
of this protocol is ≈ k · (1 + ∆ + d).

b) Nakamoto-style PoS Protocols: The above analysis
applies also to eventual-consensus (“Nakamoto-style”) proof-
of-stake protocols such as [20], [6], [12], [2], [1] with one
difference: the quantity d does not capture the expected delay
caused by mining, but rather by the leader-selection algorithm
that replaces it in these PoS protocols. Nonetheless, given the
probabilistic nature of both ∆ and d, the protocol’s resilience
against incidental forks still requires a parameterization of
the leader-selection algorithm resulting in ∆ � d and hence
limiting the achievable throughput.

c) Larger Blocks: Consider the Bitcoin protocol with
each “logical” block consisting of s network-level blocks, i.e.,
a block that can be submitted for diffusion in s slots (we
neglect the details of the mechanism for splitting the block into
parts). Similarly to above, we arrive at an expected throughput
of ≈ s/(s+∆+d) and latency ≈ k·(s+∆+d). However, note
that s + ∆ � d is still necessary to maintain a low forking
rate even in the non-adversarial setting, limiting the achievable
throughput.

d) Shorter Block Intervals: As above, the effect of short-
ening block interval s+ ∆ + d (by lowering the mining diffi-
culty and hence d) is limited due to the condition s+ ∆� d
necessary to prevent accidental forks.

e) Conflux: Bitcoin (or another PoW or PoS Nakamoto-
style protocol) is run whereby “pruned” blocks are eventually
re-included in the ledger. Still, the block interval cannot be
substantially reduced for the same argument as in the case of
“shorter block intervals” above.

f) Bitcoin-NG: This proposal exploits a part of the
available throughput between the diffusion of (“key”) blocks
to produce and diffuse so-called microblocks created by the
miner of the last key block. Therefore, out of the 1+∆+d slots
that represent the time interval between two consecutive key
blocks, only the bandwidth of the last ∆ slots are wasted, as
the microblocks produced in these slots will not be received
in time by the miner of the next key block. This results in
a throughput of ≈ (1 + d)/(1 + ∆ + d), with a latency of
≈ k ·(1+∆+d). Hence, increasing d improves throughput but
hurts latency. Also, increasing d leads to greater centralization
(due to less frequent key blocks and hence more variance in
rewards) and weaker adaptive security guarantees (each leader
is a target for corruption—such as a DoS attack—until the next
key block is selected).



V. OUR PROTOCOL

For concreteness, we implement our protocol on top of
Ouroboros Praos [12] as our underlying PoS protocol. Still,
note that similar protocols (e.g. [20], [6], [2]) could be easily
used instead to obtain similar results. We first provide a self-
contained overview of Ouroboros Praos (Section V-A) and
its inclusive extension (Section V-B) as a reference for our
exposition. The descriptions in these sections are not fully
formal to avoid duplicity, as the detailed outline of our new
protocol (Section V-C) will capture all of the mentioned
building blocks in a formal manner.

A. Ouroboros Praos

The protocol, denoted ΠPraos here, operates (and was an-
alyzed) in the semi-synchronous model with fully adaptive
corruptions, described in Section II.

It operates as follows: In each slot, each of the parties
determines whether she qualifies as a so-called slot leader
for this slot. This is done by locally evaluating a verifiable
random function (VRF, [13]) using the secret key associated
with their stake, and providing as inputs to the VRF both the
slot index and so-called epoch randomness (we will discuss
shortly where this randomness comes from). If the VRF
output is below a certain threshold that is proportional to the
party’s stake, then the party is an eligible slot leader and she
creates, signs, and broadcasts a block for that slot (containing
transactions that move stake among stakeholders). She also
includes into the block she creates the above VRF output
and its proof, to certify her eligibility to act as a slot leader.
Additionally, she also inserts another, independent VRF value
with a proof, these will be used for determining next epoch
randomness (see below). Note that the event of a particular
party becoming a slot leader is independent for two different
slots and two different parties, leading to some slots with no,
or several, slot leaders. Parties participating in the protocol are
collecting such valid blocks and always update their current
state to reflect the longest chain they have seen so far that did
not fork from their previous state by too many blocks into the
past (as captured by procedure selectchain in Fig. 3, called
maxvalid in [12]).

Multiple slots are combined into epochs, each of which
contains R ∈ N slots. The epochs are indexed by j ∈ N.
During epoch j, slot-leader election is based on the stake
distribution recorded in the ledger up to the last block of
epoch j − 2. Additionally, the epoch randomness for epoch j
is derived as a hash of those additional VRF-values that were
included into blocks in the first two thirds of epoch j − 1 for
this purpose by the respective slot leaders.

In greater detail, the threshold T ji for a party Pi, which her
VRF output must fall below for Pi to become a slot leader in
a fixed slot of epoch j is

T ji , 2`VRFφf (αji ) (1)

where αji ∈ [0, 1] is the relative stake of stakeholder Pi in
the stake distribution Sj , `VRF denotes the output length of

the VRF (formally, of the functionality Fvrf ), f ∈ (0, 1) is the
so-called active slots coefficient, and φf is the mapping

φf (α) , 1− (1− f)α . (2)

Finally, the protocol uses key-evolving signatures (KES,
formally modeled by the functionality Fkes) for block signing,
and in each slot the honest parties update their private key,
contributing to their resilience to adaptive corruptions.

To accommodate the described protocol operation, every
block in the Ouroboros Praos blockchain has the format
B = (st, d, sl, πB , ρ, σ): Here st is the hash of the previous
block; d denotes the transaction-carrying data; and sl is the
index of the slot this block belongs to. πB is a triple (Pi, y, π)
where (y, π) is the VRF output-proof pair certifying that
Pi is an eligible slot leader for slot sl; ρ = (yρ, πρ) is
an independent VRF output-proof pair used for randomness
generation. Finally, σ is a key-evolving signature of the block
by its creator.

We now note the security statement about ΠPraos from [12],
expressed in our model. Here honest stake ratio denotes the
stake (as recorded in the current view of the ledger) controlled
by uncorrupted parties as a proportion of the total stake.
Moreover, stake shift between two slots t1 < t2 denotes the
statistical distance of the stake distributions corresponding to
t1 and t2. Since the stake distribution used for sampling slot
leaders in ΠPraos is at most 2 epochs old, in all statements
below it is necessary to consider αH − ν as the lower bound
on effective honest stake ratio, see [20], [12], [40] for a more
detailed discussion of stake shift relevance.

Theorem 1 (Security of Ouroboros Praos [12]). Fix param-
eters k,R,∆, L ∈ N; ξ1, ν ∈ (0, 1). Let R = 24k/f be the
epoch length, let L denote the total lifetime of the system.
Let A be a Byzantine adversary, let αH be a lower bound
on the honest stake ratio throughout the execution. Let ν
and q be upper bounds on the maximum stake shift over 2R
slots, and the number of adversarial random oracle queries,
respectively. If (αH − ν)(1 − f)∆ ≥ (1 + ξ1)/2 then ΠPraos

implements a robust transaction ledger against A with liveness
parameter uPraos = 8k/f throughout a period of L slots except
with probability εPraos = exp (lnL+ ∆− Ω(k − log qk)) +
Pr [¬MaxDelay∆].

B. An Inclusive Variant
As discussed in Section I, an active adversary can invali-

date a substantial fraction of honest blocks in a single-chain
protocol by a variant of selfish mining [15].

To prevent this, Conflux [24] applies an inclusive-chain
rule [23] to re-include all blocks that got pruned off the main
chain. Note that this remedy alone does not achieve optimal
throughput, see Section IV for a discussion.

To achieve throughput optimality of our final parallel-chains
protocol under active corruption, we first adapt Ouroboros
Praos to apply the Conflux inclusion rule (in a slightly
modified way) before moving to its parallel execution.

The inclusion is performed by adding to each block, on top
of the link used to append a block to an existing chain, also



additional distinguished references to pick up off-chain blocks.
To disambiguate, we call the former chain links and the latter
inclusion references. For chain selection, inclusion references
are ignored.

The inclusion rule: When a slot leader creates a
block to extend a chain C, they also add inclusion
references to all tips of valid chains forking from
C that are not yet referenced from previous blocks
in C.

Given a stable chain C = B1, B2, . . . , B` of blocks Bi,
the final sequence of blocks in the ledger is determined
by including the additionally referenced blocks outside C
as follows: each Bi is directly preceded by all blocks in
past(Bi) \ past(Bi−1) sorted topologically (with tie-breaking
by block hash), where following [34], [38], [24], past(B)
denotes all blocks related to B in the transitive closure of the
union of both reference relations (chain links and inclusion
references).

Note that, in contrast to original Conflux, our chain selection
is by the longest-chain rule instead of GHOST [36], which
adapts more readily to Ouroboros Praos. It is easy to see that
the stabilization of block Bi in the main chain implies the
stabilization of the full history implied by Bi.

As a side remark, the inclusion of off-chain blocks must
be managed properly to prevent protocol-level DoS attacks: to
this end, our protocol only stores (and later includes) the first
received block per slot and slot leader.

C. The Full Construction: Parallel Chains

We denote our protocol Πm
pc, where pc stands for “parallel

chains”. As mentioned, on a high level the protocol Πm
pc

consists of a parallel execution of m copies of a slightly
adapted Inclusive Ouroboros Praos protocol such that these
copies together maintain a joint ledger (describing a joint
distribution of stake). We sometimes omit m from the notation
and simply write Πpc.

The protocol Πpc is spelled out in detail in Figures 2 and 3;
we now focus on describing the differences from a single-chain
execution of Inclusive Ouroboros Praos. The protocol assumes
the availability of functionalities Finit, Fdiff , Fvrf , Fsig, Fkes,
Fro as described in [12] and surveyed in Appendix B for
completeness.

We treat the protocol in the symmetric-bandwidth model
with µ = 1 (cf. Section III). We remark that it can be trivially
generalized to a different bandwidth profile (with better down-
link bandwidth µ > 1) by involving an increased number of
chains mµ , µ·m to again achieve optimal throughput as long
as the block producers would not oversaturate their uplinks.

In Πpc we extend the block format of ΠPraos to also contain
the index of a chain it belongs to, denoted c ∈ [m]; and a list I
of references to blocks included according to the rule from
Section V-B. Formally, every block in Πpc has the format B =
(c, st, I, d, sl, πB , ρ, σ). We sometimes call a block c-block to
refer to its chain index. The c-th chain only contains c-blocks
(except the genesis block) and is referred to as the c-chain.
Since each block B contains its slot number, we denote it by

Fig. 2. Protocol Πmpc , part 1.

The protocol Πpc is run by stakeholders, initially equal to
P1, . . . ,Pn, interacting among themselves and with ideal function-
alities Finit, Fdiff , Fvrf , Fsig, Fkes, Fro over a sequence of L = ER
slots S = (sl1, . . . , slL) consisting of E epochs with R slots each.
Let T ji , 2`VRFφf (αji ). Then Πpc proceeds as follows for each
stakeholder Pi:

1) Initialization.
a) Pi sends (KeyGen, sid,Pi) to Fvrf , Fkes and Fsig; receiv-

ing (VerificationKey, sid, vi) for vi ∈ {vvrf
i , vkes

i , vsig
i },

respectively. If this is the first round, Pi sends
(ver keys, sid,Pi, v

vrf
i , vkes

i , vsig
i ) to Finit to claim stake

from the genesis block. In any case, it terminates the round
by returning (Pi, v

vrf
i , vkes

i , vsig
i ) to Z .

b) In the next round, Pi sends (genblock req, sid,Pi) to
Finit, receiving (genblock, sid, S0, η). If Pi is initialized
in the first round, it sets the local blockchains C , (Cc)

m
c=1

to Cc := G , (S0, η) and block sets B , (Bc)mc=1 to
Bc = {G} for each c ∈ [m], otherwise it receives the
local blockchains C = (Cc)

m
c=1 and sets B = (Bc)mc=1

from the environment.
After initialization, in each slot sl∗ ∈ S (of epoch ej∗ ), Pi
performs the following:

2) Epoch Update. If a new epoch ej∗ with j∗ ≥ 2 has started,
Pi computes Sj∗ and ηj∗ as follows:
a) Sj∗ is the stake distribution recorded in the state

GetValidTX
(
C|j
∗−2,B|j

∗−2
)

where the inputs are the
currently held chains and block sets (C,B) truncated up
to the last slot of epoch j∗ − 2.

b) To compute ηj∗ , collect the blocks B =
(c, st, I, d, sl, πB , ρ, σ) ∈ Cc belonging to epoch ej∗−1

up to the slot with timestamp (j∗ − 2)R + 2R/3 in any
of the currently held c-chains Cc for c ∈ [m], concatenate
the values yρ (from each ρ) into a value v in some fixed
predetermined order, and let ηj∗ = H(ηj∗−1 ‖ j∗ ‖ v).

3) Chains Update. For all c ∈ [m], Pi performs the following
steps:
a) Pi processes every new c-block B =

(c, st, I, d, sl, πB , ρ, σ) with πB = (Ps, y, π),
ρ = (yρ, πρ), and sl belonging to some epoch ej ;
received via diffusion as follows: The block is added to
Bc if all the following conditions are satisfied, otherwise
it is dropped:
(i) sl ≤ sl∗, y < T js , and there is no block with the same

(Ps, sl) in Bc,
(ii) Fvrf replies (Verified, sid, ηj ‖ c ‖ sl ‖ TEST, y, π, 1);

to (Verify, sid, ηj ‖ c ‖ sl ‖ TEST, y, π, vvrf
s )

(iii) Fvrf replies (Verified, sid, ηj ‖ c ‖ sl ‖ NONCE, yρ, πρ, 1)
to (Verify, sid, ηj ‖ c ‖ sl ‖ NONCE, yρ, πρ, vvrf

s );
(iv) Fkes replies (Verified, sid, (c, st, d, sl, πB , ρ), sl, 1)

to (Verify, sid, (c, st, I, d, sl, πB , ρ), sl, σ, vkes
s ).

b) Pi determines Vc as the set of all connected blocks
in Bc and collects all c-chains that can be constructed
(respecting the previous-block hashes st) from the blocks
in Vc into a set Cc.

c) Pi computes Cc := selectchain(Cc,Cc), and updates C =
(Cc)

m
c=1.

slot(B), and C|t denotes the chain C truncated to only contain
blocks up to slot t. Overloading this notation, C|j denotes the
chain C truncated up to the end of epoch j, and similar filtering
can also be applied to block sets.

Formally, let Est, EI be the binary relations on blocks such



Fig. 3. Protocol Πmpc , part 2.

4) Chains Extension. Pi receives from the environment the
transaction data d∗ ∈ {0, 1}∗ to be inserted into the ledger.
For all c ∈ [m], Pi performs the following steps:
a) Send (EvalProve, sid, ηj ‖ c ‖ sl∗ ‖ NONCE) to Fvrf , get

(Evaluated, sid, ycρ, π
c
ρ).

b) Send (EvalProve, sid, ηj ‖ c ‖ sl∗ ‖ TEST) to Fvrf , get
(Evaluated, sid, yc, πc).

c) Pi checks whether yc < T ji . If yes, it chooses a maximal
sequence d′ of c-transactions in d∗ that can be appended
to GetValidTX (C,B) without invalidating it and fit into
a block, and attempts to include d′ into Cc as follows: It
generates a new block B = (c, stc, I, d′, sl∗, πB , ρ, σ)
where stc = H(head(Cc)), I is a list of hash
references to all leaf blocks (referenced neither
by chain links nor by inclusion references) in Vc
that are not in past(head(Cc)), πB = (Pi, y

c, πc),
ρ = (ycρ, π

c
ρ) and σ is a signature obtained by

sending (USign, sid,Pi, (c, stc, I, d′, sl∗, πB , ρ), sl∗)
to Fkes and receiving the repsonse
(Signature, sid, (c, stc, I, d′, sl∗, πB , ρ), sl∗, σ). Pi
computes Cc := Cc ‖B, sets Cc as the new local c-chain
and diffuses B.

5) Signing Transactions. Upon receiving (sign tx, sid′, tx)
from the environment, Pi sends (Sign, sid,Pi, tx) to
Fsig, receiving (Signature, sid, tx, σ). Then, Pi sends
(signed tx, sid′, tx, σ) back to the environment.

Procedure selectchain(C,C):
1) Drop all chains C′ from C that fork from C more than k

blocks (i.e., more than k blocks of C would be discarded if
C′ was adopted).

2) Return the longest of the remaining chains. If multiple such
chains remain, return either C if this is one of them, or return
the one that is listed first in C.

Procedure GetValidTX(C1, . . . ,Cm,B1, . . . ,Bm):
1) Take all blocks in chains C1, . . . ,Cm and order these blocks

in an increasing order according to their slot index sl,
breaking ties using the chain number c, obtaining a sequence
B1, . . . , B`.

2) For each i ∈ [`], prepend block Bi in this sequence by
all blocks from

⋃
i∈[m] Bi ∩ (past(Bi) \ past(Bi−1)) sorted

topologically, breaking ties by block hash.
3) Take all transactions from the resulting sequence of blocks,

in the order as they appear. Remove all transactions that are
invalid with respect to the ledger state formed by all the
preceding transactions.

that B1EstB2 if and only if B2 contains H(B1) as its value
st; and B1EIB2 if and only if B2 contains H(B1) in its
list of references I. Let past(B) , {B′ : B′(Est ∪ EI)+B},
where R+ denotes the transitive closure of a relation R. At
any point during the execution, a party considers a block B
she has seen as connected if the party has already seen all
the blocks in past(B), while the genesis block G is always
connected. Accordingly, a received block is only considered
once it is connected.

To prevent concurrent block production across the m chains
from including the same transactions, we partition the trans-
action set along the lines of “sharding” [11], [10]: We assume
a fixed function chain(tx) that for each transaction tx returns
a chain index c ∈ [m] of the only chain in which tx can be
inserted. We refer to a tx such that chain(tx) = c as a c-

transaction, and assume that chain(·) is reasonably balanced
(consider for example chain(tx) = H(tx) mod m).

Each party Pi executing Πpc starts by requesting its ver-
ification keys for a VRF, a KES, and an ordinary signature
scheme, just like in the single-chain protocol. She claims its
stake in the genesis block G (if she participates from the first
round) and initializes all m chains to either consist of G only
(if this is the first round), or adopts chains received from the
environment.

The sequences of transactions stored in the m parallel
executions are merged using the procedure GetValidTX given
in Figure 3. Any party Pi obtains the ledger state LPi [t] of the
stable transactions at time t as follows: given its current view
of chains C = (Cc)

m
c=1 and respective blocks B = (Bc)mc=1,

she computes tstable as the maximum slot up to which all m
chains are stable, i.e., the minimum slot index of a k-blocks-
deep block in any of the chains (this only depends on C, not
B). LPi [t] is then obtained by merging the chains’ (inclusive)
block sequences together with the included blocks up to this
slot using GetValidTX. Formally,

tstable , min
c∈[m]

slot
(
head

(
Cdkc

))
and

LPi [t] , GetValidTX
(
C|tstable ,B|tstable

)
,

where the truncation is performed on every element of the sets
C,B individually.

The stake distribution Sj and epoch randomness ηj for
determining slot leaders in epoch j are derived in conceptually
the same way as in the single-chain case. Namely, the stake
distribution used is taken from the end of epoch j − 2, by
looking at all chains and included blocks up to that point
and merging them using GetValidTX. The randomness ηj is
obtained by hashing together all the VRF values yρ included
in all m chains in all blocks in epoch j − 1 up to its slot
2R/3. Slot leadership is determined independently for each
party, each slot, and each chain, via the same VRF-based
threshold mechanism as in Ouroboros Praos, and verified in
the same way. Eligible slot leaders (for a particular chain Cc)
simply create a block for this chain, and include pending c-
transactions that are consistent with the current view of the
chains, as well as all block references I according to the
inclusive rule. Validity of a chain received from the network
is determined as in the single-chain case, except that the
transactions themselves are not validated at this point. Their
validity can only be determined based on the state of the other
chains.

VI. ANALYSIS

In this section we formally prove the robustness and
throughput guarantees of Πpc.

A. Robustness

We first establish the security of Πm
pc by proving that

it implements a robust transaction ledger against Byzantine



adversaries with the same liveness as ΠPraos and the error
probability scaled by the number of chains m.

Theorem 2 (Robustness). Fix parameters k,∆ ∈ N; ξ1 ∈
(0, 1); let f denote the active slot coefficient in Πm

pc, let
R = 24k/f be the epoch length, let L denote the total
lifetime of the system. Let A ∈ Ab be a Byzantine-corruption
adversary, let αH be a lower bound on the honest stake ratio
throughout the execution. Let ν and q be upper bounds on
the maximum stake shift over 2R slots, and the number of
adversarial random oracle queries, respectively. Let uPraos and
εPraos be as in Theorem 1. If (αH− ν)(1− f)∆ ≥ (1 + ξ1)/2
then the protocol Πm

pc implements a robust transaction ledger
with liveness parameter uPraos against A except with error
probability at most εrob = m · εPraos + Pr [¬MaxDelay∆].

Proof sketch. Observe that each of the m chains produced
during the execution of Πm

pc can be seen as an outcome of
an independent execution of ΠPraos, except that the leader
selection in epoch j is based on:
• the stake distribution Sj taken from the state of all m

chains at the end of epoch j − 2;
• the epoch randomness ηj derived from VRF-values yρ

collected from appropriate blocks of all m chains.
In particular, note that the chain construction and chain selec-
tion (and hence also the consensus itself) is completely unaf-
fected by the “inclusive” changes described in Section V-B.

An analysis of the robustness argument for single-chain
ΠPraos given in [12] shows that the argument is not violated
by the above changes, the error probability merely needs to
be adjusted by an additional factor m to account for a union
bound over the failure probability for each of the chains.
Since the analysis in [12] is performed in a model where all
message delays are bounded by ∆, an additional additive term
Pr [¬MaxDelay∆] accounts for the occurrence of longer delays
in our model.

More concretely, the robustness of the single-chain ΠPraos

is derived in [12] from the simpler chain-specific properties
of common prefix (CP), chain growth (CG), and chain quality
(CQ), as defined in Section II. First, CP, CG and CQ are
established for a single-epoch execution of the protocol with
a static-corruption adversary. As these arguments assume a
fixed stake distribution and perfect epoch randomness, they
can also be directly applied to a single-epoch execution of each
of the m chains of Πm

pc under these assumptions. Second, it is
shown that any adaptive adversary is dominated by a particular
static adversary, hence extending the single-epoch guarantees
to adaptive adversaries as well: this argument can also be
applied to Πpc without modification. Finally, the analysis is
extended to multiple epochs by analyzing the subprotocol for
updating the stake distribution and randomness used for leader
sampling. This analysis relies on the single-epoch bounds on
CP, CG and CQ violations obtained above. Since in Πm

pc this
subprotocol depends on all m chains, we need to assume
that single-epoch CP, CG and CQ are maintained on each of
them, leading to the additional factor m in the final security
bound.

B. κ-Boundedness

We now investigate the delays caused by non-adversarial
message queuing for our construction. Namely, we show that
Πm

pc is κ-bounded except with probability negligible in κ,
as long as the number of chains m does not exceed a
particular threshold. Intuitively, exceeding it would cause a
block creation rate in the system to go too close to (or exceed)
1 and hence overload the recipients’ bandwidth – even in
absence of an adversary.

Theorem 3. [κ-Boundedness] Let κ ∈ N and ξ2 ∈ (0, 1/2),
let f denote the active slot coefficient in Πm

pc and let m ≤
(1 − ξ2)(1 − f)/f . The probability that, during an L-round
execution of Πm

pc with A⊥, there is a block that incurs a delay
of at least κ rounds, is bounded by

εκ ≤ 2L · exp

(
−ξ

2
2(ξ2κ− 3)

9

)
.

Hence, the protocol Πm
pc executed over a period of L slots is

(κ, εκ)-bounded.

Towards proving Theorem 3, we first establish a general
queuing lemma that will be used in our argument.

Lemma 1. Assume an L-slot execution of m ≥ 1 queues each
with service rate 1 per slot wherein, during any r slots, at most
r overall messages get added to the queues. Then there is no
slot where, at its very beginning, all queues together contain
r + 1 or more messages.

Proof. Consider the single-queue case — whereas the multi-
queue case directly follows as the overall service is at least as
large as in the single-queue case. For the sake of contradiction,
consider the first slot t where the queue contains at least r+1
messages at its very beginning. Consider the oldest one of
these r + 1 messages and consider the first slot t′ where this
message was present at the beginning of the slot. It must hold
that t′ ≥ t− r+ 1 as, otherwise, there were r+ 1 messages in
the queue at the beginning of slot t′ < t where t is assumed to
be the first such slot. This implies that all r+1 messages must
have arrived within the r slots t−r, . . . , t−1, in contradiction
to the assumption.

Now we apply Lemma 1 to upper-bound the number of
messages waiting in the outbox and inbox queues at any point
during an execution of Πpc with A⊥, this is done respectively
in Lemmas 2 and 3.

Lemma 2. Let κ ∈ N and ξ2 ∈ (0, 1/2), let f denote the
active slot coefficient in Πm

pc. For any

m ≤ (1− ξ2)(1− f)/f , (3)

the probability that during an L-slot execution of Πm
pc with

A⊥ there is a slot where all parties’ outbox queues together
contain at least ξ2κ/3 blocks at the beginning of the slot is
bounded by

Pout ≤ L · exp

(
−ξ

2
2(ξ2κ− 3)

9

)
.



Proof. For any fixed slot, let (αi)
n
i=1 denote the relative stakes

of all currently participating parties, as recorded in the stake
distribution used for determining slot leaders for this slot. We
first note that the expected number of blocks created in this
slot (by all parties on all chains) is

m ·
n∑
i=1

φf (αi) = m ·
n∑
i=1

(1− (1− f)αi)

(a)

≤ m · ln 1

1− f
≤ m · f

1− f
≤ 1− ξ2 ,

where the inequality (a) follows from Jensen inequality and
the observations that g(n) , n

(
1− (1− f)1/n

)
is increasing

and converges to − ln(1− f) for n→∞.
Moreover, block-generation can be viewed as elementary

independent experiments (one per slot, party, and chain) with
respect to an indicator random variable Xi ∈ {0, 1} where
Xi = 1 denotes the respective success. Thus, the probability
Pout that, during any `out = ξ2κ/3 − 1 rounds, at least `out

blocks are generated, can be estimated by the Chernoff bound
of Theorem 5 with µ = (1− ξ2)`out and δ = ξ2/(1− ξ2). The
lemma now follows by a union bound over the length of the
execution and Lemma 1.

Lemma 3. Let κ ∈ N and ξ2 ∈ (0, 1/2), let f denote the
active slot coefficient in Πm

pc and let m satisfy (3). Consider
an L-round execution of Πm

pc with A⊥. Given that there is
no round where all outbox queues together contain at least
ξ2κ/3 blocks at the beginning of the round, the probability
that there is a round where a party’s inbox queue contains
at least (1 − ξ2/3)κ blocks at the beginning of the round is
bounded by

Pin ≤ L · exp

(
−ξ

2
2

3

(
κ− 1

1− ξ2

))
.

Proof. Note that under A⊥, all parties’ inboxes behave iden-
tically. Along the lines of Lemma 2, we observe that the
probability Pin that, during any `in = (1−2ξ2/3)k−1 rounds,
at least `in blocks are generated, is upper bounded as above
by the Chernoff bound (µ = (1− ξ2)`in and δ = ξ2/(1− ξ2))
and the union bound. Additionally, at most ξ2κ/3 blocks that
were already present in the outbox queues might get added to
each inbox during these `in rounds. We can hence conclude
by Lemma 1 that the inbox never contains (1 − ξ2/3)κ
blocks at the beginning of a round — except for the above
probability.

The above lemmas allow us to establish the κ-boundedness
of Πm

pc through Theorem 3.

Proof of Theorem 3. Assume that some block has delay at
least κ = tout + tin spending tout rounds in the outbox queue
and tin rounds in the inbox queue. Thus, tout ≥ ξ2κ/3 or
tin ≥ (1 − ξ2/3)κ. The respective probabilities are given by
Lemmas 2 and 3, and

εκ ≤ Pout + (1− Pout)Pin ≤ 2L · exp

(
−ξ

2
2(ξ2κ− 3)

9

)
,

as desired.

C. Throughput
Now we focus on the throughput achieved by Πm

pc, and
express it as a parameter of the number of chains m.

Theorem 4 (Throughput). Fix parameters k,∆ ∈ N, ξ3 ∈
(0, 1/2], let f ∈ (0, 1) denote the active slot coefficient in
Πm

pc, assume that (1−f)∆ ≥ 1/2, and let f̂ , f(1−f)∆. Let
A ∈ Ab be an active adversary, let αH ∈ [0, 1] be a lower
bound on the honest stake ratio throughout the execution, let
ν be upper bound on the maximum stake shift over 2R slots,
and assume α̂H , αH − ν > 0. The protocol Πm

pc achieves
(θ, L0)-throughput for any L0 ≥ (4k + 2∆)/((1− ξ3)2α̂Hf̂)
and for

θ = (1− ξ3)2 ·

(
1− 2k + 3∆

(1− ξ3)2α̂Hf̂L0

)
· α̂H · f̂ ·m (4)

against A except with error probability

εtp , 4 ·m · exp
(
−ξ2

3α̂Hfk/2
)

+ εrob , (5)

where εrob is the negligible robustness error-probability from
Theorem 2.

Before we prove Theorem 4, we briefly discuss Bound (4).
Intuitively, the optimal throughput of Πm

pc is α̂H · f · m, as
each of the m chains contains a block once in f−1 slots on
expectation, and with probability at least α̂H this leader is
honest. Three factors separate Bound (4) from this optimum.

First, the term 1−ξ3 is used to apply a concentration bound
(twice) and can be made arbitrarily small at the expense of
increasing the minimum duration L0 to achieve the stated
throughput.

Second, for the term 1 − (2k + 3∆)/(cL0), consider the
case where the investigated interval is at the end of the protocol
execution. We discount the 2k last blocks of this interval from
each chain. By chain quality, the first k such blocks contain
an honest main-chain block to reference all off-chain blocks
published prior to the final sequence of 2k blocks. The final
k blocks make this history stable. Note that this term also
diminishes with increasing L0.

Third, f is replaced by f̂ to account for possible occurrence
of forks that are caused by the probabilistic leader selection
in ΠPraos in combination with message delays. Note that the
assumption (1−f)∆ ≥ 1/2 is natural: we are not interested in
a parameterization that does not satisfy it, as (4) would result
in a throughput below 1/2 anyway.

Proof of Theorem 4. Consider an environment Z , let T $←
Exec (Π,A,Z), and let I be a slot interval of length |I| =
L ≥ L0. We will split the interval I into a prefix interval Ipref

consisting of its first Lpref slots of I (for Lpref given below),
and a suffix interval Isuf of Lsuf = L − Lpref slots. We then
argue that with overwhelming probability:

(i) each chain contains at least (1− ξ3)2 · α̂H · f̂ ·Lpref −∆
blocks in Ipref ;

(ii) all m chains produced by Πm
pc contain at least 2k blocks

in Isuf implying that all blocks contained in all m chains
in Ipref are stable.



Both parts will rely on establishing a lower bound on the chain
growth of a single Ouroboros Praos chain in the presence of
an active adversary A, assuming message delays are bounded
by ∆.

We will consider ∆-right isolated successful slots along the
lines of [19], [12]: these are slots with only honest slot leaders
where the following ∆ slots do not have any leaders at all. We
will call these slots good for brevity and denote by good(t) a
function that returns 1 if t is good and 0 otherwise. Moreover,
let I ′pref , [t1, t2] denote the interval Ipref without its first ∆

slots and let L′pref , |I ′pref | = |Ipref | −∆ = t2 − t1 + 1.
We now argue that the growth by productive blocks corre-

sponding to Ipref in a chain held by any party at the end of
the execution is lower-bounded by the number of good slots
appearing in I ′pref . This because
• an (honest) slot leader of the first such round will be

aware of all blocks that were published during any slots
prior to Ipref (as we ignore the first ∆ slots of Ipref ), and
will thus not duplicate any content that originates from
“outside” Ipref ; and

• an (honest) slot leader of any following such round will
have learned all blocks form its prior isolated rounds, and
won’t duplicate any content of any such prior block.

For a fixed chain c ∈ [m], let W (c)
t be a random variable

that takes the value 0 if the slot t has at least one honest
slot leader, and ⊥ otherwise (the symbols are chosen for
consistency with [2]). Given the slot-leader selection rules of
ΠPraos (and Πpc) described in Section V-A, the probability
that a particular slot has at least one slot leader for chain c is
exactly f . Thanks to the local nature of the VRF-based leader-
selection, A has no advantage in predicting a slot leader until
he acts, and hence α̂Hf ≤ Pr [Wt = 0] ≤ f .

To lower-bound the number of good slots in I ′pref that
produce a block that is guaranteed to be seen by all hon-
est party before the first slot in Isuf , we will rely on a
concentration bound for this quantity derived in [2] and
detailed in Appendix C. More concretely, observe that the
sequence of random variables W (c)

t1 , . . . ,W
(c)
t2 corresponding

to the interval I ′pref satisfies the (f, 1)-characteristic condition
according to Definition 6 and we can invoke Lemma 4 with
γ = 1 and a = α̂Hf to bound the probability of having too
few good slots by

ppref , Pr

 ∑
t∈I′pref

good(t) ≤ (1− ξ3)2 · α̂H · f̂ · L′pref −∆


≤ 2 exp

(
−
ξ2
3 · α̂H

2 · f2 · L′pref

4

)
.

Since L′pref = Lpref − ∆ and (1 − ξ3)2 · α̂H · f̂ ≤ 1, this
establishes (i).

We now consider the interval Isuf for Lsuf , (2k +

∆)/
(

(1− ξ3)2α̂Hf̂
)

, and similarly as before, we define I ′suf

to denote the interval of Lsuf−∆ slots obtained when removing
the last ∆ slots from Isuf . By the same argument as above,

we observe that I ′suf will contain at least 2k good slots with
an uncorrupted leader (and hence, in Isuf , at least 2k blocks
will be appended to the longest chain that are seen by every
honest party after the last slot of the L-interval) except with
error psuf , 2 exp

(
−ξ2

3 α̂H
2
f2k/2

)
, establishing (ii).

Now, consider the blocks generated during the slot interval
I ′suf of which there are at least 2k except for error probability
psuf . Due to the chain quality of Praos, the first k blocks
contain at least one honest block — except for an error
probability subsumed by εrob in (5). This block guarantees
that all off-chain blocks from Interval I ′pref will be referenced
by any longest chain extending these k blocks. Finally, by
the common-prefix property of Praos, the last k blocks will
stabilize this honest block — except for an error probability
subsumed by εrob in (5).

Hence we can conclude that for Lsuf given above and
Lpref , L − Lsuf , the interval Ipref contains at least (1 −
ξ3)2 · α̂H · f̂ · m · L′pref − ∆ stable blocks in all m chains
except with probability m · (ppref + psuf) + εrob, where psuf =

p
(2k)
suf + p

(cq)
suf + p

(cp)
suf , resulting in the throughput parameter

θ ≥ (1− ξ3)2 ·

(
1− 2k + 3∆

(1− ξ3)2α̂Hf̂L0

)
· α̂H · f̂ ·m.

Under the assumption L0 ≥ (4k + 2∆)/((1 − ξ3)2α̂Hf̂) we
have ppref ≤ psuf and

εtp ≤ 4 ·m · exp
(
−ξ2

3 α̂H
2
f2k/2

)
+ Pr [¬MaxDelay∆] .

To demonstrate throughput optimality, we instantiate the
result of Theorem 4 with the maximum number of chains m
that still guarantees κ-boundedness of the resulting protocol
Πm

pc according to Theorem 3, yielding the following corollary:

Corollary 1. Under the notation and assumptions introduced
in Theorems 3 and 4. the protocol Πm

pc for

m = (1− ξ2)(1− f)/f

is (κ, εκ)-bounded for any κ and achieves (θ, L0)-throughput
against active adversaries for any L0 ≥ (4k + 2∆)/((1 −
ξ3)2α̂Hf̂) and

θ = (1−ξ2)·(1−ξ3)2·(1−f)∆+1·

(
1− 2k + 3∆

(1− ξ3)2α̂Hf̂L0

)
·α̂H

except with error probability εtp.

Note that the throughput given by Corollary 1 matches the
optimum θ = α̂H up to a factor that is the product of values
that can be brought arbitrarily close to 1 by tolerating a larger
slot range L0.
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APPENDIX A
CHERNOFF INEQUALITY

We record here a form of the Chernoff inequality that we
use in our arguments. See, e.g., [27] for a proof and further
discussion.

Theorem 5 (Chernoff bound). Let X1, . . . , XT be indepen-
dent random variables with E [Xi] = pi and Xi ∈ [0, 1]. Let
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Fig. 4. Functionality Fsig

Fsig interacts with a signer PS and stakeholders P1, . . . ,Pn as
follows:
• Key Generation. Upon receiving a message

(KeyGen, sid,PS) from a stakeholder PS , hand
(KeyGen, sid,PS) to the adversary. Upon receiving
(VerificationKey, sid,PS , v) from the adversary, output
(VerificationKey, sid, v) to Pi, and record the triple
(sid,PS , v).

• Signature Generation. Upon receiving a message
(Sign, sid,PS ,M) from PS , verify that (sid,PS , v) is
recorded for some sid. If not, then ignore the request. Else,
send (Sign, sid,PS ,M) to the adversary. Upon receiving
(Signature, sid,PS ,M, σ) from the adversary, verify that no
entry (M,σ, v, 0) is recorded. If it is, then output an error
message to PS and halt. Else, output (Signature, sid,M, σ)
to PS , and record the entry (M,σ, v, 0).

• Signature Verification. Upon receiving a message
(Verify, sid,M, σ, v′) from some stakeholder Pi, hand
(Verify, sid,M, σ, v′) to the adversary. Upon receiving
(Verified, sid,M, φ) from the adversary do:
1) If v′ = v and the entry (M,σ, v, 1) is recorded, then set

f = 1. (This condition guarantees completeness: If the
verification key v′ is the registered one and σ is a legit-
imately generated signature for M , then the verification
succeeds.)

2) Else, if v′ = v, the signer is not corrupted, and no entry
(M,σ′, v, 1) for any σ′ is recorded, then set f = 0 and
record the entry (M,σ, v, 0). (This condition guarantees
unforgeability: If v′ is the registered one, the signer is not
corrupted, and never signed M , then the verification fails.)

3) Else, if there is an entry (M,σ, v′, f ′) recorded, then
let f = f ′. (This condition guarantees consistency: All
verification requests with identical parameters will result
in the same answer.)

4) Else, let f = φ and record the entry (M,σ, v′, φ).
Output (Verified, sid,M, f) to Pi.

X =
∑T
i=1Xi and µ =

∑T
i=1 pi = E [X]. Then for all δ ≥ 0

we have
Pr[X ≥ (1 + δ)µ] ≤ e−

δ2

2+δµ ,

and for all 0 ≤ δ ≤ 1 we have

Pr[X ≤ (1− δ)µ] ≤ e− δ
2

2 µ .

APPENDIX B
HYBRID FUNCTIONALITIES

In Figure 4 we present the functionality Fsig as defined in
[9], where it is also shown that EUF-CMA signature schemes
realize Fsig. This functionality is used in [12] to model
signatures on transactions.

Figure 5 contains the functionality Finit that determines the
genesis stake distribution S0 and the nonce η (to be written in
the genesis block). Finit also takes stakeholders’ public keys
from them and packages them into the genesis block at the
outset of the protocol. Note that Finit halts if it is not possible
to create a genesis block; all security guarantees we provide
later in the paper are conditioned on a successful creation of
the genesis block.

In Figures 6-7 we give a description of the hybrid func-
tionalities Fvrf , Fkes, used by Πpc, these are taken from [12].

Fig. 5. Functionality Finit

Finit is parameterized by the number of initial stakeholders n and
their respective stakes s1, . . . , sn. Finit interacts with stakeholders
P1, . . . ,Pn as follows:
• In the first round, upon a request from some stakeholder

Pi of the form (ver keys, sid,Pi, v
vrf
i , vkes

i , vsig
i ), it stores

the verification keys tuple (Pi, v
vrf
i , vkes

i , vsig
i ) and acknowl-

edges its receipt. If any of the n stakeholders does not
send a request of this form to Finit, or if two differ-
ent stakeholders provide two identical keys, it halts. Other-
wise, it samples and stores a random value η

$← {0, 1}λ
and constructs a genesis block (S0, η), where S0 =(

(P1, v
vrf
1 , vkes

1 , vsig
1 , s1), . . . , (Pn, v

vrf
n , vkes

n , vsig
n , sn)

)
.

• In later rounds, upon a request of the form
(genblock req, sid,Pi) from some stakeholder Pi, Finit

sends (genblock, sid, S0, η) to Pi.

Finally, the functionality Fro represents a random oracle and
its description is omitted.

APPENDIX C
SOME RESULTS FROM [2]

Here we present a technical result from [2] (Lemma 4
below) that will be useful for the throughput analysis of
our PoS-based construction in Section V. First, we need
to introduce some notation and terminology. We keep the
definitions below in their full generality as presented in [2],
[12], even though, looking ahead, we will only use them in a
setting where the random variables Wi contain no 1-symbols
(i.e., γ = 1).

Definition 6 (The characteristic conditions [2]). Consider
a family of random variables W1, . . . ,Wn taking values in
{0, 1,⊥}. We say that they satisfy the (f ; γ)-characteristic
conditions if, for each k ≥ 1,

Pr[Wk = ⊥ |W1, . . . ,Wk−1] ≥ (1− f) ,

Pr[Wk = 0 |W1, . . . ,Wk−1,Wk 6= ⊥] ≥ γ , and hence

Pr[Wk = 1 |W1, . . . ,Wk−1,Wk 6= ⊥] ≤ 1− γ .

In the expressions above, conditioning on a collection of
random variables indicates that the statement is true for any
conditioning on the values taken by variables.

Definition 7 (Reduction mapping [12]). For ∆ ∈ N, we define
the function ρ∆ : {0, 1,⊥}∗ → {0, 1}∗ inductively as follows:

ρ∆(ε) = ε,

ρ∆(⊥‖w′) = ρ∆(w′),

ρ∆(1 ‖w′) = 1 ‖ ρ∆(w′),

ρ∆(0 ‖w′) =

{
0 ‖ ρ∆(w′) if w′ ∈ ⊥∆ ‖ {0, 1,⊥}∗,
1 ‖ ρ∆(w′) otherwise.

We call ρ∆ the reduction mapping for delay ∆.

For our purposes, it is important that when the reduction
mapping of Definition 7 is applied to a sequence W of symbols
0 and ⊥ representing slots with and without an uncorrupted
leader respectively, then every good slot results in a 0-symbol



Fig. 6. Functionality Fvrf

Fvrf interacts with stakeholders P1, . . . ,Pn as follows:
• Key Generation. Upon receiving a message (KeyGen, sid)

from a stakeholder Pi, hand (KeyGen, sid,Pi) to the adver-
sary. Upon receiving (VerificationKey, sid,Pi, v) from the
adversary, if Pi is honest, verify that v is unique, record
the pair (Pi, v) and return (VerificationKey, sid, v) to Pi.
Initialize the table T (v, ·) to empty.

• Malicious Key Generation. Upon receiving a message
(KeyGen, sid, v) from S, verify that v has not being recorded
before; in this case initialize table T (v, ·) to empty and record
the pair (S, v).

• VRF Evaluation. Upon receiving a message (Eval, sid,M)
from Pi, verify that some pair (Pi, v) is recorded. If not, then
ignore the request. Then, if the value T (v,M) is undefined,
pick a random value y from {0, 1}`VRF and set T (v,M) =
(y, ∅). Then output (Evaluated, sid, y) to Pi, where y is such
that T (v,M) = (y, S) for some S.

• VRF Evaluation and Proof. Upon receiving a message
(EvalProve, sid,M) from Pi, verify that some pair (Pi, v)
is recorded. If not, then ignore the request. Else, send
(EvalProve, sid,Pi,M) to the adversary. Upon receiving
(EvalProve, sid,M, π) from the adversary, if value T (v,M)
is undefined, verify that π is unique, pick a random value
y from {0, 1}`VRF and set T (v,M) = (y, {π}). Else, if
T (v,M) = (y, S), set T (v,M) = (y, S ∪ {π}). In any
case, output (Evaluated, sid, y, π) to Pi.

• Malicious VRF Evaluation. Upon receiving a message
(Eval, sid, v,M, π) from S for some v, do the following.
First, if (S, v) is recorded and T (v,M) is undefined, then
choose a random value y from {0, 1}`VRF and set T (v,M) =
(y, S) and output (Evaluated, sid, y) to S. The same is
performed in case (Pi, v) is recorded and Pi corrupted. Else,
if T (v,M) = (y, S′) for some S′ 6= ∅, union S to S′ and
output (Evaluated, sid, y) to S, else ignore the request.

• Verification. Upon receiving a message
(Verify, sid,M, y, π, v′) from some party P, send
(Verify, sid,M, y, π, v′) to the adversary. Upon receiving
(Verified, sid,M, y, π, v′) from the adversary do:

1) If v′ = v for some (·, v) and the entry T (v,M) equals
(y, S) with π ∈ S, then set f = 1.

2) Else, if v′ = v for some recorded pair of the form (·, v),
but no entry T (v,M) of the form (y, {. . . , π, . . .}) is
recorded, then set f = 0.

3) Else, initialize the table T (v′, ·) to empty, and set f = 0.
Output (Verified, sid,M, y, π, f) to P .

in ρ(W ). Note that the definition from [12] was slightly
adjusted to have this property in our context where we need
to isolate good slots by at least ∆ empty slots, the statement
below was adjusted accordingly.

Let #s(X) denote the number of occurrences of the symbol
s in the string X . The following lemma is a minor technical
adaptation of Lemma 8(iv) from [2], where a constant 1/4 is
replaced by 1− ξ3 in the application of concentration bounds
and ε is set to 0.

Lemma 4 ([2], Lemma 8(iv)). Let W = W1 · · ·Wn be a
sequence of random variables, each taking values in {⊥, 0, 1},
which satisfy the (f ; γ)-characteristic conditions and let

X = X1 · · ·X` = ρ∆(W1 · · ·Wn)

be the random variables obtained by applying the reduction

Fig. 7. Functionality Fkes

Fkes is parameterized by the total number of signature updates T ,
interacting with a signer PS and stakeholders Pi as follows:
• Key Generation. Upon receiving a message

(KeyGen, sid,PS) from a stakeholder PS , send
(KeyGen, sid,PS) to the adversary. Upon receiving
(VerificationKey, sid,PS , v) from the adversary, send
(VerificationKey, sid, v) to PS , record the triple (sid,PS , v)
and set counter kctr = 1.

• Sign and Update. Upon receiving a message
(USign, sid,PS ,M, j) from PS , verify that (sid,PS , v)
is recorded for some sid and that kctr ≤ j ≤ T . If
not, then ignore the request. Else, set kctr = j + 1
and send (Sign, sid,PS ,M, j) to the adversary. Upon
receiving (Signature, sid,PS ,M, j, σ) from the adversary,
verify that no entry (M, j, σ, v, 0) is recorded. If it is,
then output an error message to PS and halt. Else, send
(Signature, sid,M, j, σ) to PS , and record the entry
(M, j, σ, v, 1).

• Signature Verification. Upon receiving a message
(Verify, sid,M, j, σ, v′) from some stakeholder Pi do:

1) If v′ = v and the entry (M, j, σ, v, 1) is recorded, then
set f = 1. (This condition guarantees completeness:
If the verification key v′ is the registered one and σ
is a legitimately generated signature for M , then the
verification succeeds.)

2) Else, if v′ = v, the signer is not corrupted, and no entry
(M, j, σ′, v, 1) for any σ′ is recorded, then set f = 0 and
record the entry (M, j, σ, v, 0). (This condition guarantees
unforgeability: If v′ is the registered one, the signer is not
corrupted, and never signed M , then the verification fails.)

3) Else, if there is an entry (M, j, σ, v′, f ′) recorded, then
let f = f ′. (This condition guarantees consistency: All
verification requests with identical parameters will result
in the same answer.)

4) Else, if j < kctr, let f = 0 and record the
entry (M, j, σ, v, 0). Otherwise, if j = kctr, hand
(Verify, sid,M, j, σ, v′) to the adversary. Upon receiving
(Verified, sid,M, j, φ) from the adversary let f = φ and
record the entry (M, j, σ, v′, φ). (This condition guaran-
tees that the adversary is only able to forge signatures
under keys belonging to corrupted parties for time periods
corresponding to the current or future slots.)

Output (Verified, sid,M, j, f) to Pi.

mapping (for delay ∆) to W . If

Pr[Wi = ⊥ |W1, . . . ,Wi−1] ≤ (1− a) and γ(1− f)∆ ≥ 1/2

then for any ξ3 ≤ 1/2 we have

Pr
[
#0(X) < (1− ξ3)2γ(1− f)∆an−∆

]
≤ 2 exp

(
−ξ

2
3a

2n

4

)
.



APPENDIX D
GLOSSARY OF USED NOTATION

Protocol Parameters
R epoch length in slots
L total length of protocol execution in slots, L = ER
m number of parallel chains
k number of blocks that can be reverted in the

selectchain procedure, see Figure 3
f active block coefficient, see Equation (2)
f̂ notational shorthand for f(1− f)∆

T ji leadership threshold, see Equation (1)

Analysis Parameters

θ, L0 throughput parameters, see Definition 5
µ bandwidth-asymmetry parameter, see Section III
∆ upper bound on network delay
ν upper bound on stake shift
αH lower bound on honest stake ratio
α̂H notational shorthand for αH − ν
q number of adversarial random-oracle queries
κ parameter of the κ-boundedness property, see Defini-

tion 3
ξ1 concentration-bound parameter from Theorem 1
ξ2 concentration-bound parameter from Theorem 3
ξ3 concentration-bound parameter from Theorem 4

Functionalities
Fdiff diffuse functionality modeling peer-to-peer network,

see Figure 1
Fsig digital signature, see Figure 4
Fvrf verifiable random function, see Figure 6
Fkes key-evolving digital signature, see Figure 7
Fro random oracle
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